skip to main content

Title: SHARP – VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars
Abstract We present an analysis of seven strongly gravitationally lensed quasars and the corresponding constraints on the properties of dark matter. Our results are derived by modelling the lensed image positions and flux-ratios using a combination of smooth macro models and a population of low-mass haloes within the mass range 106 to 109 M⊙. Our lens models explicitly include higher-order complexity in the form of stellar discs and luminous satellites, as well as low-mass haloes located along the observed lines of sight for the first time. Assuming a Cold Dark Matter (CDM) cosmology, we infer an average total mass fraction in substructure of $f_{\rm sub} = 0.012^{+0.007}_{-0.004}$ (68 per cent confidence limits), which is in agreement with the predictions from CDM hydrodynamical simulations to within 1σ. This result is closer to the predictions than those from previous studies that did not include line-of-sight haloes. Under the assumption of a thermal relic dark matter model, we derive a lower limit on the particle relic mass of mth > 5.58 keV (95 per cent confidence limits), which is consistent with a value of mth > 5.3 keV from the recent analysis of the Lyα forest. We also identify two main sources of possible systematic errors and more » conclude that deeper investigations in the complex structure of lens galaxies as well as the size of the background sources should be a priority for this field. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1715611
Publication Date:
NSF-PAR ID:
10183520
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
492
Issue:
2
Page Range or eLocation-ID:
3047–3059
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The free-streaming length of dark matter depends on fundamental dark matter physics, and determines the abundance and concentration of dark matter haloes on sub-galactic scales. Using the image positions and flux ratios from eight quadruply imaged quasars, we constrain the free-streaming length of dark matter and the amplitude of the subhalo mass function (SHMF). We model both main deflector subhaloes and haloes along the line of sight, and account for warm dark matter free-streaming effects on the mass function and mass–concentration relation. By calibrating the scaling of the SHMF with host halo mass and redshift using a suite of simulated haloes, we infer a global normalization for the SHMF. We account for finite-size background sources, and marginalize over the mass profile of the main deflector. Parametrizing dark matter free-streaming through the half-mode mass mhm, we constrain the thermal relic particle mass mDM corresponding to mhm. At $95 \, {\rm per\, cent}$ CI: mhm < 107.8 M⊙ ($m_{\rm {DM}} \gt 5.2 \ \rm {keV}$). We disfavour $m_{\rm {DM}} = 4.0 \,\rm {keV}$ and $m_{\rm {DM}} = 3.0 \,\rm {keV}$ with likelihood ratios of 7:1 and 30:1, respectively, relative to the peak of the posterior distribution. Assuming cold dark matter, we constrainmore »the projected mass in substructure between 106 and 109 M⊙ near lensed images. At $68 \, {\rm per\, cent}$ CI, we infer $2.0{-}6.1 \times 10^{7}\, {{\rm M}_{\odot }}\,\rm {kpc^{-2}}$, corresponding to mean projected mass fraction $\bar{f}_{\rm {sub}} = 0.035_{-0.017}^{+0.021}$. At $95 \, {\rm per\, cent}$ CI, we obtain a lower bound on the projected mass of $0.6 \times 10^{7} \,{{\rm M}_{\odot }}\,\rm {kpc^{-2}}$, corresponding to $\bar{f}_{\rm {sub}} \gt 0.005$. These results agree with the predictions of cold dark matter.« less
  2. ABSTRACT The presence of an invisible substructure has previously been detected in the gravitational lens galaxy SDSSJ0946+1006 through its perturbation of the lensed images. Using flexible models for the main halo and the subhalo perturbation, we demonstrate that the subhalo has an extraordinarily high central density and steep density slope. We robustly infer the subhalo’s projected mass within 1 kpc to be ∼2–3.7 × 109 M⊙ at >95 per cent CL for all our lens models, while the average log-slope of the subhalo’s projected density profile over the radial range 0.75–1.25 kpc is constrained to be steeper than isothermal (γ2D ≲ −1). By modeling the subhalo light, we infer a conservative upper bound on its luminosity LV < 1.2 × 108L⊙ at 95 per cent CL that shows that the perturber is dark matter dominated. We analyse lensing galaxy analogues in the Illustris TNG100-1 simulation over many lines of sight, and find hundreds of subhalos that achieve a mass within 1 kpc ≳ 2 × 109M⊙. However, less than 1 per cent of the mock observations yield a log-slope steep enough to be consistent with our lensing models, and they all have stellar masses exceeding that allowed by observations by an order of magnitude or more. We conclude that the presence of such a darkmore »highly concentrated subhalo is unexpected in a Lambda cold dark matter universe. While it remains to be determined whether this tension can be reduced by adding more complexity to the primary lens model, it is not significantly alleviated if the perturber is assumed to be a LOS structure, rather than a subhalo.« less
  3. ABSTRACT The magnifications of compact-source lenses are extremely sensitive to the presence of low-mass dark matter haloes along the entire sightline from the source to the observer. Traditionally, the study of dark matter structure in compact-source strong gravitational lenses has been limited to radio-loud systems, as the radio emission is extended and thus unaffected by microlensing which can mimic the signal of dark matter structure. An alternate approach is to measure quasar nuclear-narrow-line emission, which is free from microlensing and present in virtually all quasar lenses. In this paper, we double the number of systems which can be used for gravitational lensing analyses by presenting measurements of narrow-line emission from a sample of eight quadruply imaged quasar lens systems, WGD J0405−3308, HS 0810+2554, RX J0911+0551, SDSS J1330+1810, PS J1606−2333, WFI 2026−4536, WFI 2033−4723, and WGD J2038−4008. We describe our updated grism spectral modelling pipeline, which we use to measure narrow-line fluxes with uncertainties of 2–10 per cent, presented here. We fit the lensed image positions with smooth mass models and demonstrate that these models fail to produce the observed distribution of image fluxes over the entire sample of lenses. Furthermore, typical deviations are larger than those expected from macromodel uncertainties. This discrepancymore »indicates the presence of perturbations caused by small-scale dark matter structure. The interpretation of this result in terms of dark matter models is presented in a companion paper.« less
  4. ABSTRACT A promising route for revealing the existence of dark matter structures on mass scales smaller than the faintest galaxies is through their effect on strong gravitational lenses. We examine the role of local, lens-proximate clustering in boosting the lensing probability relative to contributions from substructure and unclustered line-of-sight (LOS) haloes. Using two cosmological simulations that can resolve halo masses of Mhalo ≃ 109 M⊙ (in a simulation box of length $L_{\rm box}{\sim }100\, {\rm Mpc}$) and 107 M⊙ ($L_{\rm box}\sim 20\, {\rm Mpc}$), we demonstrate that clustering in the vicinity of the lens host produces a clear enhancement relative to an assumption of unclustered haloes that persists to $\gt 20\, R_{\rm vir}$. This enhancement exceeds estimates that use a two-halo term to account for clustering, particularly within $2-5\, R_{\rm vir}$. We provide an analytic expression for this excess, clustered contribution. We find that local clustering boosts the expected count of 109 M⊙ perturbing haloes by $\sim \! 35{{\ \rm per\ cent}}$ compared to substructure alone, a result that will significantly enhance expected signals for low-redshift (zl ≃ 0.2) lenses, where substructure contributes substantially compared to LOS haloes. We also find that the orientation of the lens with respect to the line ofmore »sight (e.g. whether the line of sight passes through the major axis of the lens) can also have a significant effect on the lensing signal, boosting counts by an additional $\sim 50{{\ \rm per\ cent}}$ compared to a random orientations. This could be important if discovered lenses are biased to be oriented along their principal axis.« less
  5. ABSTRACT We derive a new mass estimator that relies on internal proper motion measurements of dispersion-supported stellar systems, one that is distinct and complementary to existing estimators for line-of-sight velocities. Starting with the spherical Jeans equation, we show that there exists a radius where the mass enclosed depends only on the projected tangential velocity dispersion, assuming that the anisotropy profile slowly varies. This is well-approximated at the radius where the log-slope of the stellar tracer profile is −2: r−2. The associated mass is $M(r_{-2}) = 2 G^{-1} \langle \sigma _{\mathcal {T}}^{2}\rangle ^{*} r_{-2}$ and the circular velocity is $V^{2}({r_{-2}}) = 2\langle \sigma _{\mathcal {T}}^{2}\rangle ^{*}$. For a Plummer profile r−2 ≃ 4Re/5. Importantly, r−2 is smaller than the characteristic radius for line-of-sight velocities derived by Wolf et al. Together, the two estimators can constrain the mass profiles of dispersion-supported galaxies. We illustrate its applicability using published proper motion measurements of dwarf galaxies Draco and Sculptor, and find that they are consistent with inhabiting cuspy NFW subhaloes of the kind predicted in CDM but we cannot rule out a core. We test our combined mass estimators against previously published, non-spherical cosmological dwarf galaxy simulations done in both cold dark matter (CDM; naturallymore »cuspy profile) and self-interacting dark matter (SIDM; cored profile). For CDM, the estimates for the dynamic rotation curves are found to be accurate to $10\rm { per\, cent}$ while SIDM are accurate to $15\rm { per\, cent}$. Unfortunately, this level of accuracy is not good enough to measure slopes at the level required to distinguish between cusps and cores of the type predicted in viable SIDM models without stronger priors. However, we find that this provides good enough accuracy to distinguish between the normalization differences predicted at small radii (r ≃ r−2 < rcore) for interesting SIDM models. As the number of galaxies with internal proper motions increases, mass estimators of this kind will enable valuable constraints on SIDM and CDM models.« less