skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SHARP – VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars
Abstract We present an analysis of seven strongly gravitationally lensed quasars and the corresponding constraints on the properties of dark matter. Our results are derived by modelling the lensed image positions and flux-ratios using a combination of smooth macro models and a population of low-mass haloes within the mass range 106 to 109 M⊙. Our lens models explicitly include higher-order complexity in the form of stellar discs and luminous satellites, as well as low-mass haloes located along the observed lines of sight for the first time. Assuming a Cold Dark Matter (CDM) cosmology, we infer an average total mass fraction in substructure of $$f_{\rm sub} = 0.012^{+0.007}_{-0.004}$$ (68 per cent confidence limits), which is in agreement with the predictions from CDM hydrodynamical simulations to within 1σ. This result is closer to the predictions than those from previous studies that did not include line-of-sight haloes. Under the assumption of a thermal relic dark matter model, we derive a lower limit on the particle relic mass of mth > 5.58 keV (95 per cent confidence limits), which is consistent with a value of mth > 5.3 keV from the recent analysis of the Lyα forest. We also identify two main sources of possible systematic errors and conclude that deeper investigations in the complex structure of lens galaxies as well as the size of the background sources should be a priority for this field.  more » « less
Award ID(s):
1715611
PAR ID:
10183520
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
492
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
3047–3059
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The free-streaming length of dark matter depends on fundamental dark matter physics, and determines the abundance and concentration of dark matter haloes on sub-galactic scales. Using the image positions and flux ratios from eight quadruply imaged quasars, we constrain the free-streaming length of dark matter and the amplitude of the subhalo mass function (SHMF). We model both main deflector subhaloes and haloes along the line of sight, and account for warm dark matter free-streaming effects on the mass function and mass–concentration relation. By calibrating the scaling of the SHMF with host halo mass and redshift using a suite of simulated haloes, we infer a global normalization for the SHMF. We account for finite-size background sources, and marginalize over the mass profile of the main deflector. Parametrizing dark matter free-streaming through the half-mode mass mhm, we constrain the thermal relic particle mass mDM corresponding to mhm. At $$95 \, {\rm per\, cent}$$ CI: mhm < 107.8 M⊙ ($$m_{\rm {DM}} \gt 5.2 \ \rm {keV}$$). We disfavour $$m_{\rm {DM}} = 4.0 \,\rm {keV}$$ and $$m_{\rm {DM}} = 3.0 \,\rm {keV}$$ with likelihood ratios of 7:1 and 30:1, respectively, relative to the peak of the posterior distribution. Assuming cold dark matter, we constrain the projected mass in substructure between 106 and 109 M⊙ near lensed images. At $$68 \, {\rm per\, cent}$$ CI, we infer $$2.0{-}6.1 \times 10^{7}\, {{\rm M}_{\odot }}\,\rm {kpc^{-2}}$$, corresponding to mean projected mass fraction $$\bar{f}_{\rm {sub}} = 0.035_{-0.017}^{+0.021}$$. At $$95 \, {\rm per\, cent}$$ CI, we obtain a lower bound on the projected mass of $$0.6 \times 10^{7} \,{{\rm M}_{\odot }}\,\rm {kpc^{-2}}$$, corresponding to $$\bar{f}_{\rm {sub}} \gt 0.005$$. These results agree with the predictions of cold dark matter. 
    more » « less
  2. null (Ed.)
    ABSTRACT We derive joint constraints on the warm dark matter (WDM) half-mode scale by combining the analyses of a selection of astrophysical probes: strong gravitational lensing with extended sources, the Ly α forest, and the number of luminous satellites in the Milky Way. We derive an upper limit of λhm = 0.089 Mpc h−1 at the 95 per cent confidence level, which we show to be stable for a broad range of prior choices. Assuming a Planck cosmology and that WDM particles are thermal relics, this corresponds to an upper limit on the half-mode mass of Mhm < 3 × 107 M⊙ h−1, and a lower limit on the particle mass of mth > 6.048 keV, both at the 95 per cent confidence level. We find that models with λhm > 0.223 Mpc h−1 (corresponding to mth > 2.552 keV and Mhm < 4.8 × 108 M⊙ h−1) are ruled out with respect to the maximum likelihood model by a factor ≤1/20. For lepton asymmetries L6 > 10, we rule out the 7.1 keV sterile neutrino dark matter model, which presents a possible explanation to the unidentified 3.55 keV line in the Milky Way and clusters of galaxies. The inferred 95 percentiles suggest that we further rule out the ETHOS-4 model of self-interacting DM. Our results highlight the importance of extending the current constraints to lower half-mode scales. We address important sources of systematic errors and provide prospects for how the constraints of these probes can be improved upon in the future. 
    more » « less
  3. ABSTRACT Stringent observational constraints on the subgalactic matter power spectrum would allow one to distinguish between the concordance ΛCDM and the various alternative dark-matter models that predict significantly different properties of mass structure in galactic haloes. Galaxy–galaxy strong gravitational lensing provides a unique opportunity to probe the subgalactic mass structure in lens galaxies beyond the Local Group. Here, we demonstrate the first application of a novel methodology to observationally constrain the subgalactic matter power spectrum in the inner regions of massive elliptical lens galaxies on 1–10 kpc scales from the power spectrum of surface-brightness anomalies in highly magnified galaxy-scale Einstein rings and gravitational arcs. The pilot application of our approach to Hubble Space Telescope (HST/WFC3/F390W) observations of the SLACS lens system SDSS J0252+0039 allows us to place the following observational constraints (at the 99 per cent confidence level) on the dimensionless convergence power spectrum $$\Delta ^{2}_{\delta \kappa }$$ and the standard deviation in the aperture mass σAM: $$\Delta ^{2}_{\delta \kappa }\lt 1$$ (σAM < 0.8 × 108 M⊙) on 0.5-kpc scale, $$\Delta ^{2}_{\delta \kappa }\lt 0.1$$ (σAM < 1 × 108 M⊙) on 1-kpc scale and $$\Delta ^{2}_{\delta \kappa }\lt 0.01$$ (σAM < 3 × 108 M⊙) on 3-kpc scale. These first upper-limit constraints still considerably exceed the estimated effect of CDM subhaloes. However, future analysis of a larger sample of galaxy–galaxy strong lens systems can substantially narrow down these limits and possibly rule out dark-matter models that predict a significantly higher level of density fluctuations on the critical subgalactic scales. 
    more » « less
  4. ABSTRACT The dark matter (DM) distribution in dwarf galaxies provides crucial insights into both structure formation and the particle nature of DM. GraphNPE (Graph Neural Posterior Estimator), first introduced in Nguyen et al. (2023), is a novel simulation-based inference framework that combines graph neural networks and normalizing flows to infer the DM density profile from line-of-sight stellar velocities. Here, we apply GraphNPE to satellite dwarf galaxies in the FIRE-2 Latte simulation suite of Milky Way-mass haloes, testing it against both Cold and Self-Interacting DM scenarios. Our method demonstrates superior precision compared to conventional Jeans-based approaches, recovering DM density profiles to within the 95 per cent confidence level even in systems with as few as 30 tracers. Moreover, we present the first evaluation of mass modelling methods in constraining two key parameters from realistic simulations: the peak circular velocity, $$V_\mathrm{max}$$, and the peak virial mass, $$M_\mathrm{200m}^\mathrm{peak}$$. Using only line-of-sight velocities, GraphNPE can reliably recover both $$V_\mathrm{max}$$ and $$M_\mathrm{200m}^\mathrm{peak}$$ within our quoted uncertainties, including those experiencing tidal effects ($$\gtrsim 63~{{\rm per\ cent}}$$ of systems are recovered within our 68 per cent confidence intervals and $$\gtrsim 92~{{\rm per\ cent}}$$ within our 95 per cent confidence intervals). The method achieves $$10-20~{{\rm per\ cent}}$$ accuracy in $$V_\mathrm{max}$$ recovery, while $$M_\mathrm{200m}^\mathrm{peak}$$ is recovered to $$0.1-0.4 \, \mathrm{dex}$$ accuracy. This work establishes GraphNPE as a robust tool for inferring DM density profiles in dwarf galaxies, offering promising avenues for constraining DM models. The framework’s potential extends beyond this study, as it can be adapted to non-spherical and disequilibrium models, showcasing the broader utility of simulation-based inference and graph-based learning in astrophysics. 
    more » « less
  5. ABSTRACT We detail a method to measure the correspondence between dark matter (DM) models and observations of stellar populations within Local Group dwarf spheroidal galaxies (LG dSphs) that assumes no parametric stellar distribution. Solving the spherical or cylindrical Jeans equations, we calculate the consistency of DM and stellar kinematic models with stellar positions and line-of-sight velocities. Our method can be used to search for signals of standard and exotic DM distributions. Applying our methodology to the Fornax LG dSph and using statistical bootstrapping, we find: (i) that oblate or prolate cored DM haloes match the stellar data, respectively, ≃60 or ≃370 times better than oblate or prolate cusped DM haloes for isotropic and isothermal stellar velocity dispersions, (ii) that cusped spherical DM haloes and cored spherical DM haloes match the Fornax data similarly well for isotropic stellar velocity dispersions, (iii) that the semiminor to semimajor axial ratio of spheroidal DM haloes are more extreme than 80 per cent of those predicted by Lambda cold dark matter with baryon simulations, (iv) that oblate cored or cusped DM haloes are, respectively, ≃5 or ≃30 times better matches to Fornax than prolate cored or cusped DM haloes, and (v) that Fornax shows no evidence of a disc-like structure with more than two per cent of the total DM mass. We further note that the best-fitting cusped haloes universally favour the largest mass and size fit parameters. If these extreme limits are decreased, the cusped halo likelihoods decrease relative to those of cored haloes. 
    more » « less