skip to main content

Title: Joint constraints on thermal relic dark matter from strong gravitational lensing, the Ly α forest, and Milky Way satellites
ABSTRACT We derive joint constraints on the warm dark matter (WDM) half-mode scale by combining the analyses of a selection of astrophysical probes: strong gravitational lensing with extended sources, the Ly α forest, and the number of luminous satellites in the Milky Way. We derive an upper limit of λhm = 0.089 Mpc h−1 at the 95 per cent confidence level, which we show to be stable for a broad range of prior choices. Assuming a Planck cosmology and that WDM particles are thermal relics, this corresponds to an upper limit on the half-mode mass of Mhm < 3 × 107 M⊙ h−1, and a lower limit on the particle mass of mth > 6.048 keV, both at the 95 per cent confidence level. We find that models with λhm > 0.223 Mpc h−1 (corresponding to mth > 2.552 keV and Mhm < 4.8 × 108 M⊙ h−1) are ruled out with respect to the maximum likelihood model by a factor ≤1/20. For lepton asymmetries L6 > 10, we rule out the 7.1 keV sterile neutrino dark matter model, which presents a possible explanation to the unidentified 3.55 keV line in the Milky Way and clusters of galaxies. The inferred 95 percentiles suggest that we further rule out the ETHOS-4 model of self-interacting DM. Our results highlight the more » importance of extending the current constraints to lower half-mode scales. We address important sources of systematic errors and provide prospects for how the constraints of these probes can be improved upon in the future. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1715611
Publication Date:
NSF-PAR ID:
10288210
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
506
Issue:
4
Page Range or eLocation-ID:
5848 to 5862
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The free-streaming length of dark matter depends on fundamental dark matter physics, and determines the abundance and concentration of dark matter haloes on sub-galactic scales. Using the image positions and flux ratios from eight quadruply imaged quasars, we constrain the free-streaming length of dark matter and the amplitude of the subhalo mass function (SHMF). We model both main deflector subhaloes and haloes along the line of sight, and account for warm dark matter free-streaming effects on the mass function and mass–concentration relation. By calibrating the scaling of the SHMF with host halo mass and redshift using a suite of simulated haloes, we infer a global normalization for the SHMF. We account for finite-size background sources, and marginalize over the mass profile of the main deflector. Parametrizing dark matter free-streaming through the half-mode mass mhm, we constrain the thermal relic particle mass mDM corresponding to mhm. At $95 \, {\rm per\, cent}$ CI: mhm < 107.8 M⊙ ($m_{\rm {DM}} \gt 5.2 \ \rm {keV}$). We disfavour $m_{\rm {DM}} = 4.0 \,\rm {keV}$ and $m_{\rm {DM}} = 3.0 \,\rm {keV}$ with likelihood ratios of 7:1 and 30:1, respectively, relative to the peak of the posterior distribution. Assuming cold dark matter, we constrainmore »the projected mass in substructure between 106 and 109 M⊙ near lensed images. At $68 \, {\rm per\, cent}$ CI, we infer $2.0{-}6.1 \times 10^{7}\, {{\rm M}_{\odot }}\,\rm {kpc^{-2}}$, corresponding to mean projected mass fraction $\bar{f}_{\rm {sub}} = 0.035_{-0.017}^{+0.021}$. At $95 \, {\rm per\, cent}$ CI, we obtain a lower bound on the projected mass of $0.6 \times 10^{7} \,{{\rm M}_{\odot }}\,\rm {kpc^{-2}}$, corresponding to $\bar{f}_{\rm {sub}} \gt 0.005$. These results agree with the predictions of cold dark matter.« less
  2. Abstract We present an analysis of seven strongly gravitationally lensed quasars and the corresponding constraints on the properties of dark matter. Our results are derived by modelling the lensed image positions and flux-ratios using a combination of smooth macro models and a population of low-mass haloes within the mass range 106 to 109 M⊙. Our lens models explicitly include higher-order complexity in the form of stellar discs and luminous satellites, as well as low-mass haloes located along the observed lines of sight for the first time. Assuming a Cold Dark Matter (CDM) cosmology, we infer an average total mass fraction in substructure of $f_{\rm sub} = 0.012^{+0.007}_{-0.004}$ (68 per cent confidence limits), which is in agreement with the predictions from CDM hydrodynamical simulations to within 1σ. This result is closer to the predictions than those from previous studies that did not include line-of-sight haloes. Under the assumption of a thermal relic dark matter model, we derive a lower limit on the particle relic mass of mth > 5.58 keV (95 per cent confidence limits), which is consistent with a value of mth > 5.3 keV from the recent analysis of the Lyα forest. We also identify two main sources of possible systematic errors andmore »conclude that deeper investigations in the complex structure of lens galaxies as well as the size of the background sources should be a priority for this field.« less
  3. ABSTRACT Core formation and runaway core collapse in models with self-interacting dark matter (SIDM) significantly alter the central density profiles of collapsed haloes. Using a forward modelling inference framework with simulated data-sets, we demonstrate that flux ratios in quadruple image strong gravitational lenses can detect the unique structural properties of SIDM haloes, and statistically constrain the amplitude and velocity dependence of the interaction cross-section in haloes with masses between 106 and 1010 M⊙. Measurements on these scales probe self-interactions at velocities below $30 \ \rm {km} \ \rm {s^{-1}}$, a relatively unexplored regime of parameter space, complimenting constraints at higher velocities from galaxies and clusters. We cast constraints on the amplitude and velocity dependence of the interaction cross-section in terms of σ20, the cross-section amplitude at $20 \ \rm {km} \ \rm {s^{-1}}$. With 50 lenses, a sample size available in the near future, and flux ratios measured from spatially compact mid-IR emission around the background quasar, we forecast $\sigma _{20} \lt 11\rm {\small {--}}23 \ \rm {cm^2} \rm {g^{-1}}$ at $95 {{\ \rm per\ cent}}$ CI, depending on the amplitude of the subhalo mass function, and assuming cold dark matter (CDM). Alternatively, if $\sigma _{20} = 19.2 \ \rmmore »{cm^2}\rm {g^{-1}}$ we can rule out CDM with a likelihood ratio of 20:1, assuming an amplitude of the subhalo mass function that results from doubly efficient tidal disruption in the Milky Way relative to massive elliptical galaxies. These results demonstrate that strong lensing of compact, unresolved sources can constrain SIDM structure on sub-galactic scales across cosmological distances, and the evolution of SIDM density profiles over several Gyr of cosmic time.« less
  4. ABSTRACT We report the result of searching for globular clusters (GCs) around 55 Milky Way (MW) satellite dwarf galaxies within the distance of 450 kpc from the Galactic Centre except for the Large and Small Magellanic Clouds and the Sagittarius dwarf. For each dwarf, we analyse the stellar distribution of sources in Gaia DR2, selected by magnitude, proper motion, and source morphology. Using the kernel density estimation of stellar number counts, we identify 11 possible GC candidates. Cross-matched with existing imaging data, all 11 objects are known either GCs or galaxies and only Fornax GC 1–6 among them are associated with the targeted dwarf galaxy. Using simulated GCs, we calculate the GC detection limit $M_{\rm V}^{\rm lim}$ that spans the range from $M_{\rm V}^{\rm lim}\sim -7$ for distant dwarfs to $M_{\rm V}^{\rm lim}\sim 0$ for nearby systems. Assuming a Gaussian GC luminosity function, we compute that the completeness of the GC search is above 90 per cent for most dwarf galaxies. We construct the 90 per cent credible intervals/upper limits on the GC specific frequency SN of the MW dwarf galaxies: 12 < SN < 47 for Fornax, SN < 20 for the dwarfs with −12 < MV < −10, SNmore »< 30 for the dwarfs with −10 < MV < −7, and SN < 90 for the dwarfs with MV > −7. Based on SN, we derive the probability of galaxies hosting GCs given their luminosity, finding that the probability of galaxies fainter than MV = −9 to host GCs is lower than 0.1.« less
  5. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (&gt; 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>