skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heterogeneous Private Information Retrieval
Private information retrieval (PIR) enables clients to query and retrieve data from untrusted servers without the untrusted servers learning which data was retrieved. In this paper, we present a new class of multi-server PIR protocols, which we call heterogeneous PIR (HPIR). In such multi-server PIR protocols, the computation and communication overheads imposed on the PIR servers are non-uniform, i.e., some servers handle higher computation/communication burdens than the others. This enables heterogeneous PIR protocols to be suitable for a range of new PIR applications. What enables us to enforce such heterogeneity is a unique PIR-tailored secret sharing algorithm that we leverage in building our PIR protocol. We have implemented our HPIR protocol and evaluated its performance in comparison with regular (i.e., homogenous) PIR protocols. Our evaluations demonstrate that a querying client can trade off the computation and communication loads of the (heterogeneous) PIR servers by adjusting some parameters. For example in a two-server scenario with a heterogeneity degree of 4/1, to retrieve a 456KB file from a 0.2GB database, the rich (i.e., resourceful) PIR server will do 1.1 seconds worth of computation compared to 0.3 seconds by the poor (resource-constrained) PIR server; this is while each of the servers would do the same 1 seconds of computation in a homogeneous setting. Also, for this given example, our HPIR protocol will impose a 912KB communication bandwidth on the rich server compared to 228KB on the poor server (by contrast to 456KB overheads on each of the servers for a traditional homogeneous design).  more » « less
Award ID(s):
1719386
PAR ID:
10183612
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Network and Distributed Systems Security (NDSS) Symposium 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study both the practical and theoretical efficiency of private information retrieval (PIR) protocols in a model wherein several untrusted servers work to obliviously service remote clients’ requests for data and yet no pair of servers colludes in a bid to violate said obliviousness. In exchange for such a strong security assumption, we obtain new PIR protocols exhibiting remarkable efficiency with respect to every cost metric—download, upload, computation, and round complexity—typically considered in the PIR literature. The new constructions extend a multiserver PIR protocol of Shah, Rashmi, and Ramchandran (ISIT 2014), which exhibits a remarkable property of its own: to fetch a b -bit record from a collection of r such records, the client need only download b + 1 bits total. We find that allowing “a bit more” download (and optionally introducing computational assumptions) yields a family of protocols offering very attractive trade-offs. In addition to Shah et al.’s protocol, this family includes as special cases (2-server instances of) the seminal protocol of Chor, Goldreich, Kushilevitz, and Sudan (FOCS 1995) and the recent DPF-based protocol of Boyle, Gilboa, and Ishai (CCS 2016). An implicit “folklore” axiom that dogmatically permeates the research literature on multiserver PIR posits that the latter protocols are the “most efficient” protocols possible in the perfectly and computationally private settings, respectively. Yet our findings soundly refute this supposed axiom: These special cases are (by far) the least performant representatives of our family, with essentially all other parameter settings yielding instances that are significantly faster. 
    more » « less
  2. We study the problem of weakly private information retrieval (PIR) when there is heterogeneity in servers’ trustfulness under the maximal leakage (Max-L) metric. A user wishes to retrieve a desired message from N non-colluding servers efficiently, such that the identity of the desired message is not leaked in a significant manner; however, some servers can be more trustworthy than others. We propose a code construction for this setting and optimize the probability distribution for this construction. It is shown that the optimal probability allocation for the proposed scheme essentially separates the delivery patterns into two parts: a completely private part that has the same download overhead as the capacity-achieving PIR code, and a non-private part that allows complete privacy leakage but has no download overhead by downloading only from the most trustful server. The optimal solution is established through a sophisticated analysis of the underlying convex optimization problem, and a reduction between the homogeneous setting and the heterogeneous setting. 
    more » « less
  3. Private Information Retrieval (PIR) allows several clients to query a database held by one or more servers, such that the contents of their queries remain private. Prior PIR schemes have achieved sublinear communication and computation by leveraging computational assumptions, federating trust among many servers, relaxing security to permit differentially private leakage, refactoring effort into an offline stage to reduce online costs, or amortizing costs over a large batch of queries. In this work, we present an efficient PIR protocol that combines all of the above techniques to achieve constant amortized communication and computation complexity in the size of the database and constant client work. We leverage differentially private leakage in order to provide better trade-offs between privacy and efficiency. Our protocol achieves speedups up to and exceeding 10x in practical settings compared to state of the art PIR protocols, and can scale to batches with hundreds of millions of queries on cheap commodity AWS machines. Our protocol builds upon a new secret sharing scheme that is both incremental and non-malleable, which may be of interest to a wider audience. Our protocol provides security up to abort against malicious adversaries that can corrupt all but one party. 
    more » « less
  4. null (Ed.)
    Distributed ORAM (DORAM) is a multi-server variant of Oblivious RAM. Originally proposed to lower bandwidth, DORAM has recently been of great interest due to its applicability to secure computation in the RAM model, where circuit complexity and rounds of communication are equally important metrics of efficiency. In this work, we construct the first DORAM schemes in the 2-server, semi-honest setting that simultaneously achieve sublinear server computation and constant rounds of communication. We provide two constant-round constructions, one based on square root ORAM that has O(sqrt(N) log(N)) local computation and another based on secure computation of a doubly efficient PIR that achieves local computation of O(N^ϵ) for any ϵ>0 but that allows the servers to distinguish between reads and writes. As a building block in the latter construction, we provide secure computation protocols for evaluation and interpolation of multivariate polynomials based on the Fast Fourier Transform, which may be of independent interest. 
    more » « less
  5. Harguess, Joshua D; Bastian, Nathaniel D; Pace, Teresa L (Ed.)
    Outsourcing computational tasks to the cloud offers numerous advantages, such as availability, scalability, and elasticity. These advantages are evident when outsourcing resource-demanding Machine Learning (ML) applications. However, cloud computing presents security challenges. For instance, allocating Virtual Machines (VMs) with varying security levels onto commonly shared servers creates cybersecurity and privacy risks. Researchers proposed several cryptographic methods to protect privacy, such as Multi-party Computation (MPC). Attackers unfortunately can still gain unauthorized access to users’ data if they successfully compromise a specific number of the participating MPC nodes. Cloud Service Providers (CSPs) can mitigate the risk of such attacks by distributing the MPC protocol over VMs allocated to separate physical servers (i.e., hypervisors). On the other hand, underutilizing cloud servers increases operational and resource costs, and worsens the overhead of MPC protocols. In this ongoing work, we address the security, communication and computation overheads, and performance limitations of MPC. We model this multi-objective optimization problem using several approaches, including but not limited to, zero-sum and non-zero-sum games. For example, we investigate Nash Equilibrium (NE) allocation strategies that reduce potential security risks, while minimizing response time and performance overhead, and/or maximizing resource usage. 
    more » « less