skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1719386

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Private information retrieval (PIR) enables clients to query and retrieve data from untrusted servers without the untrusted servers learning which data was retrieved. In this paper, we present a new class of multi-server PIR protocols, which we call heterogeneous PIR (HPIR). In such multi-server PIR protocols, the computation and communication overheads imposed on the PIR servers are non-uniform, i.e., some servers handle higher computation/communication burdens than the others. This enables heterogeneous PIR protocols to be suitable for a range of new PIR applications. What enables us to enforce such heterogeneity is a unique PIR-tailored secret sharing algorithm that we leverage in building our PIR protocol. We have implemented our HPIR protocol and evaluated its performance in comparison with regular (i.e., homogenous) PIR protocols. Our evaluations demonstrate that a querying client can trade off the computation and communication loads of the (heterogeneous) PIR servers by adjusting some parameters. For example in a two-server scenario with a heterogeneity degree of 4/1, to retrieve a 456KB file from a 0.2GB database, the rich (i.e., resourceful) PIR server will do 1.1 seconds worth of computation compared to 0.3 seconds by the poor (resource-constrained) PIR server; this is while each of the servers would do the same 1 seconds of computation in a homogeneous setting. Also, for this given example, our HPIR protocol will impose a 912KB communication bandwidth on the rich server compared to 228KB on the poor server (by contrast to 456KB overheads on each of the servers for a traditional homogeneous design). 
    more » « less
  2. Information-centric network (ICN) designs are susceptible to censorship especially packet filtering based on content names. Previous works on censorship circumvention in ICN either have high processing times or use proxies that can be blocked easily by the censoring agents. We design a new censorship circumvention approach for ICN using router redirection that enables a client in a censored region to retrieve blocked content from a censored destination without the censoring agent detecting the use of a censorship circumvention tool. We conduct ndnSIM-based simulation experiments showing that our approach is practical with only a modest end-to-end delay overhead. 
    more » « less