skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A comprehensive study on deep learning bug characteristics
Deep learning has gained substantial popularity in recent years. Developers mainly rely on libraries and tools to add deep learning capabilities to their software. What kinds of bugs are frequently found in such software? What are the root causes of such bugs? What impacts do such bugs have? Which stages of deep learning pipeline are more bug prone? Are there any antipatterns? Understanding such characteristics of bugs in deep learning software has the potential to foster the development of better deep learning platforms, debugging mechanisms, development practices, and encourage the development of analysis and verification frameworks. Therefore, we study 2716 high-quality posts from Stack Overflow and 500 bug fix commits from Github about five popular deep learning libraries Caffe, Keras, Tensorflow, Theano, and Torch to understand the types of bugs, root causes of bugs, impacts of bugs, bug-prone stage of deep learning pipeline as well as whether there are some common antipatterns found in this buggy software. The key findings of our study include: data bug and logic bug are the most severe bug types in deep learning software appearing more than 48% of the times, major root causes of these bugs are Incorrect Model Parameter (IPS) and Structural Inefficiency (SI) showing up more than 43% of the times.We have also found that the bugs in the usage of deep learning libraries have some common antipatterns.  more » « less
Award ID(s):
1934884 1513263
PAR ID:
10183752
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering
Page Range / eLocation ID:
510 to 520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Database-backed web applications are prone to performance bugs related to database accesses. While much work has been conducted on database-access antipatterns with some recent work focusing on performance impact, there still lacks a comprehensive view of database-access performance antipatterns in database-backed web applications. To date, no existing work systematically reports known antipatterns in the literature, and no existing work has studied database-access performance bugs in major types of web applications that access databases differently.To address this issue, we first summarize all known database-access performance antipatterns found through our literature survey, and we report all of them in this paper. We further collect database-access performance bugs from web applications that access databases through language-provided SQL interfaces, which have been largely ignored by recent work, to check how extensively the known antipatterns can cover these bugs. For bugs not covered by the known antipatterns, we extract new database-access performance antipatterns based on real-world performance bugs from such web applications. Our study in total reports 24 known and 10 new database-access performance antipatterns. Our results can guide future work to develop effective tool support for different types of web applications. 
    more » « less
  2. Significant interest in applying Deep Neural Network (DNN) has fueled the need to support engineering of software that uses DNNs. Repairing software that uses DNNs is one such unmistakable SE need where automated tools could be very helpful; however, we do not fully understand challenges to repairing and patterns that are utilized when manually repairing them. What challenges should automated repair tools address? What are the repair patterns whose automation could help developers? Which repair patterns should be assigned a higher priority for automation? This work presents a comprehensive study of bug fix patterns to address these questions. We have studied 415 repairs from Stack Overflow and 555 repairs from GitHub for five popular deep learning libraries Caffe, Keras, Tensorflow, Theano, and Torch to understand challenges in repairs and bug repair patterns. Our key findings reveal that DNN bug fix patterns are distinctive compared to traditional bug fix patterns; the most common bug fix patterns are fixing data dimension and neural network connectivity; DNN bug fixes have the potential to introduce adversarial vulnerabilities; DNN bug fixes frequently introduce new bugs; and DNN bug localization, reuse of trained model, and coping with frequent releases are major challenges faced by developers when fixing bugs. We also contribute a benchmark of 667 DNN (bug, repair) instances. 
    more » « less
  3. Feldt, Robert; Zimmermann, Thomas; Basili, Victor R; Briand, Lionel C (Ed.)
    Recent work has shown that Machine Learning (ML) programs are error-prone and called for contracts for ML code. Contracts, as in the design by contract methodology, help document APIs and aid API users in writing correct code. The question is: what kinds of contracts would provide the most help to API users? We are especially interested in what kinds of contracts help API users catch errors at earlier stages in the ML pipeline. We describe an empirical study of posts on Stack Overflow of the four most often-discussed ML libraries: TensorFlow, Scikit-learn, Keras, and PyTorch. For these libraries, our study extracted 413 informal (English) API specifications. We used these specifications to understand the following questions. What are the root causes and effects behind ML contract violations? Are there common patterns of ML contract violations? When does understanding ML contracts require an advanced level of ML software expertise? Could checking contracts at the API level help detect the violations in early ML pipeline stages? Our key findings are that the most commonly needed contracts for ML APIs are either checking constraints on single arguments of an API or on the order of API calls. The software engineering community could employ existing contract mining approaches to mine these contracts to promote an increased understanding of ML APIs. We also noted a need to combine behavioral and temporal contract mining approaches. We report on categories of required ML contracts, which may help designers of contract languages. 
    more » « less
  4. Self-driving cars, or Autonomous Vehicles (AVs), are increasingly becoming an integral part of our daily life. About 50 corporations are actively working on AVs, including large companies such as Google, Ford, and Intel. Some AVs are already operating on public roads, with at least one unfortunate fatality recently on record. As a result, understanding bugs in AVs is critical for ensuring their security, safety, robustness, and correctness. While previous studies have focused on a variety of domains (e.g., numerical software; machine learning; and error-handling, concurrency, and performance bugs) to investigate bug characteristics, AVs have not been studied in a similar manner. Recently, two software systems for AVs, Baidu Apollo and Autoware, have emerged as frontrunners in the opensource community and have been used by large companies and governments (e.g., Lincoln, Volvo, Ford, Intel, Hitachi, LG, and the US Department of Transportation). From these two leading AV software systems, this paper describes our investigation of 16,851 commits and 499 AV bugs and introduces our classification of those bugs into 13 root causes, 20 bug symptoms, and 18 categories of software components those bugs often affect. We identify 16 major findings from our study and draw broader lessons from them to guide the research community towards future directions in software bug detection, localization, and repair. 
    more » « less
  5. As autonomous driving systems (ADSes) become increasingly complex and integral to daily life, the importance of understanding the nature and mitigation of software bugs in these systems has grown correspondingly. Addressing the challenges of software maintenance in autonomous driving systems (e.g., handling real-time system decisions and ensuring safety-critical reliability) is crucial due to the unique combination of real-time decision-making requirements and the high stakes of operational failures in ADSes. The potential of automated tools in this domain is promising, yet there remains a gap in our comprehension of the challenges faced and the strategies employed during manual debugging and repair of such systems. In this paper, we present an empirical study that investigates bug-fix patterns in ADSes, with the aim of improving reliability and safety. We have analyzed the commit histories and bug reports of two major autonomous driving projects, Apollo and Autoware, from 1,331 bug fixes with the study of bug symptoms, root causes, and bug-fix patterns. Our study reveals several dominant bug-fix patterns, including those related to path planning, data flow, and configuration management. Additionally, we find that the frequency distribution of bug-fix patterns varies significantly depending on their nature and types and that certain categories of bugs are recurrent and more challenging to exterminate. Based on our findings, we propose a hierarchy of ADS bugs and two taxonomies of 15 syntactic bug-fix patterns and 27 semantic bug-fix patterns that offer guidance for bug identification and resolution. We also contribute a benchmark of 1,331 ADS bug-fix instances. 
    more » « less