skip to main content

Title: What drives community flood risk management? Policy diffusion or free-riding.
This study explores whether participation in the US Federal Emergency Management Agency’s Com- munity Rating System (CRS), a voluntary community flood risk management program, is a function of policy diffusion or an act of free-riding. Policy diffusion would suggest that, all else being equal, once a community has joined the CRS, neighboring communities will be more likely to follow their lead and participate in the CRS. Free-riding would imply that neighboring communities might choose not to participate in the CRS because they perceive that their community benefits from surrounding communities’ participation. Results indicate that a community’s decision to participate in the CRS is not influenced by the characteristics of or the behavior of their neighbors. The results of this study do, however, show that population density, aggregate housing values, rentership rate, and flat topography are significant predictors of CRS participation.
Authors:
Award ID(s):
1838421
Publication Date:
NSF-PAR ID:
10183753
Journal Name:
International journal of sustainable development and planning
Volume:
15
Issue:
1
Page Range or eLocation-ID:
69-80
ISSN:
1743-7601
Sponsoring Org:
National Science Foundation
More Like this
  1. This study analyzes which communities adopted flood risk management practices during the past 25 years. In particular, we focus on community-scale flood management efforts undertaken voluntarily in towns and counties across the United States. In 1990, the US Federal Emergency Management Agency created the Community Rating System (CRS) to provide incentives to local governments to improve flood resilience. About 1,300 counties and cities voluntarily participate in the CRS, but most eligible communities do not participate. Here, we explore the factors shaping community CRS participation, such as flood risk, socio-economic characteristics, and economic resources, and we assess the competing phenomena ofmore »policy diffusion versus free riding. Previous models of community-scale flood mitigation activities have all considered each community’s decision as independent of one another. Yet one community’s flood management activities might directly or indirectly influence its neighbors’ mitigation efforts. Spillover effects or “contagion” may arise if neighboring communities learn from or seek to emulate or outcompete early adopting neighbors. Conversely, stricter regulation in one community may allow its neighbors to capitalize on looser regulation either by attracting more development or enjoying reduced “downstream” flood risks. This paper presents a conceptual model that allows for multiple forces affecting diffusion, such as copycatting and learning from neighboring communities, free-riding on neighbors’ efforts, and competing with neighbors to provide valuable amenities. We empirically test for these alternative diffusion pathways after controlling for the spatially correlated extant flood risks, building patterns, and demographics. The analysis integrates several large datasets to predict community flood risk management for all cities and counties in the US since 1990. Controls for local flood risk combined with a spatial lag regression model allow separate identification of alternative diffusion pathways. The results indicate strong evidence of copycatting and also suggest possible free-riding.« less
  2. Floods remain the most destructive natural hazard worldwide. Understanding and improving flood management at the community scale (i.e., levels larger than the individual or household, but smaller than regions, states, or nations) is important in order to reduce communities’ vulnerability to floods. The growing literature examining flood management at the community scale has not emphasized analysis of the impacts of a flood-risk management policy on migration and development. We contribute new evidence on the impact of the Community Ratings System (CRS), a community scale federal program, on migration and development in the United States. The CRS program was created inmore »1990 to enable communities to voluntarily reduce flood risks, and in return, receive discounted flood insurance premiums. Using panel data (1970–2010), the study estimates fixed-effects regressions with robust standard errors clustered by group. The results indicate that the CRS discourages new construction and the construction of mobile homes or trailers in participating communities. Also, the CRS discourages population growth, but encourages people to stay in CRS participating communities. The study will benefit both academics and practitioners by helping to illuminate the impact of the CRS on migration and development, and improve our understanding of community-scale flood risk management.« less
  3. The Community Rating System (CRS) program was implemented by the U.S. Federal Emergency Management Agency (FEMA) in 1990 as an optional program to encourage communities to voluntarily engage in flood mitigation initiatives. This article uses national census tract-level data from 1980 to 2010 to estimate whether CRS participation and flood risk affect a community's local patterns of population change. We employ an instrumental-variables strategy to address the potential endogeneity of CRS participation, based on community-scale demographic factors that predict when a tract’s host community joins the CRS. The results find significant effects of the CRS program and flood risk onmore »population change. Taken together, the findings point to greater propensity for community-scale flood management in areas with more newcomers and programs such as CRS stabilizing population, though not especially in flood- prone areas. We observe the CRS neither displacing population toward lower-risk areas nor attracting more people to flood-prone areas.« less
  4. Community and citizen science on climate change-influenced topics offers a way for participants to actively engage in understanding the changes and documenting the impacts. As in broader climate change education, a focus on the negative impacts can often leave participants feeling a sense of powerlessness. In large scale projects where participation is primarily limited to data collection, it is often difficult for volunteers to see how the data can inform decision making that can help create a positive future. In this paper, we propose and test a method of linking community and citizen science engagement to thinking about and planningmore »for the future through scenarios story development using the data collected by the volunteers. We used a youth focused wild berry monitoring program that spanned urban and rural Alaska to test this method across diverse age levels and learning settings. Using qualitative analysis of educator interviews and youth work samples, we found that using a scenario stories development mini-workshop allowed the youth to use their own data and the data from other sites to imagine the future and possible actions to sustain berry resources for their communities. This process allowed youth to exercise key cognitive skills for sustainability, including systems thinking, futures thinking, and strategic thinking. The analysis suggested that youth would benefit from further practicing the skill of envisioning oneself as an agent of change in the environment. Educators valued working with lead scientists on the project and the experience for youth to participate in the interdisciplinary program. They also identified the combination of the berry data collection, analysis and scenarios stories activities as a teaching practice that allowed the youth to situate their citizen science participation in a personal, local and cultural context. The majority of the youth groups pursued some level of stewardship action following the activity. The most common actions included collecting additional years of berry data, communicating results to a broader community, and joining other community and citizen science projects. A few groups actually pursued solutions illustrated in the scenario stories. The pairing of community and citizen science with scenario stories development provides a promising method to connect data to action for a sustainable and resilient future.« less
  5. The conventional approach of policy interventions in water management that focus on the portions of the system that directly relate to water often lead to unintended consequences that potentially exacerbate water scarcity issues and present challenges to the future viability of many rural agricultural communities. This paper deploys a system dynamics model to illustrate how expanding the policy space of hydrology models to include socioeconomic feedbacks could address these challenges. In this regard, policies that can potentially mitigate general water scarcity in a region of the American Southwest in southern New Mexico are examined. We selected and tested policies withmore »the potential to diminish water scarcity without compromising the system’s economic performance. These policies included supporting choices that reduce or limit the expansion of water-intensive crops, promoting workforce participation, encouraging investment in capital, and regulating land use change processes. The simulation results, after the proposed boundary expansion, unveiled intervention options not commonly exercised by water decision-makers, bolstering the argument that integrated approaches to water research that include socioeconomic feedbacks are crucial for the study of agricultural community resilience.« less