skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Price of Schedulability in Multi-Object Tracking: The History-vs.-Accuracy Trade-Off
Autonomous vehicles often employ computer-vision (CV) algorithms that track the movements of pedestrians and other vehicles to maintain safe distances from them. These algorithms are usually expressed as real-time processing graphs that have cycles due to back edges that provide history information. If immediate back history is required, then such a cycle must execute sequentially. Due to this requirement, any graph that contains a cycle with utilization exceeding 1.0 is categorically unschedulable, i.e., bounded graph response times cannot be guaranteed. Unfortunately, such cycles can occur in practice, particularly if conservative execution-time assumptions are made, as befits a safety-critical system. This dilemma can be obviated by allowing older back history, which enables parallelism in cycle execution at the expense of possibly affecting the accuracy of tracking. However, the efficacy of this solution hinges on the resulting history-vs.-accuracy trade-off that it exposes. In this paper, this trade-off is explored in depth through an experimental study conducted using the open-source CARLA autonomous driving simulator. Somewhat surprisingly, easing away from always requiring immediate back history proved to have only a marginal impact on accuracy in this study.  more » « less
Award ID(s):
1717589 1837337
PAR ID:
10183926
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 23rd International Symposium on Real-Time Distributed Computing
Page Range / eLocation ID:
124 to 133
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many computer-vision (CV) applications used in autonomous vehicles rely on historical results, which introduce cycles in processing graphs. However, existing response-time analysis breaks down in the presence of cycles, either by failing completely or by drastically sacrificing parallelism or CV accuracy. To address this situation, this paper presents a new graph-based task model, based on the recently ratified OpenVX standard, that includes historical requirements and their induced cycles as first-class concepts. Using this model, response-time bounds for graphs that may contain cycles are derived. These bounds expose a tradeoff between responsiveness and CV accuracy that hinges on the extent of allowed parallelism. This tradeoff is illustrated via a CV case study involving pedestrian tracking. In this case study, the methods proposed in this paper enabled significant improvements in both analytical and observed response times, with acceptable CV accuracy, compared to prior methods. 
    more » « less
  2. The energy and latency demands of critical workload execution, such as object detection, in embedded systems vary based on the physical system state and other external factors. Many recent mobile and autonomous System-on-Chips (SoC) embed a diverse range of accelerators with unique power and performance characteristics. The execution flow of the critical workloads can be adjusted to span into multiple accelerators so that the trade-off between performance and energy fits to the dynamically changing physical factors. In this study, we propose running neural network (NN) inference on multiple accelerators of an SoC. Our goal is to enable an energy-performance trade-off with an by distributing layers in a NN between a performance- and a power-efficient accelerator. We first provide an empirical modeling methodology to characterize execution and inter-layer transition times. We then find an optimal layers-to-accelerator mapping by representing the trade-off as a linear programming optimization constraint. We evaluate our approach on the NVIDIA Xavier AGX SoC with commonly used NN models. We use the Z3 SMT solver to find schedules for different energy consumption targets, with up to 98% prediction accuracy. 
    more » « less
  3. In high-level design explorations, many useful optimizations transform a circuit into another with different operating cycles for a better trade-off between performance and resource usage. How to efficiently check their equivalence is critical and challenging since most existing equivalence checkers are designed for cycle-accurate circuits. This paper presents SE3, an efficient sequential equivalence checker without assumption on cycle-accuracy, latch mapping, or I/O interface of the checked circuits. It proves the equivalence of two circuits by computing an equivalence relation between the states of the two circuits and utilizes syntax abstraction to accelerate this process. Experimental results show that SE3 is significantly faster than state-of-the-art sequential equivalence checking algorithms. 
    more » « less
  4. Abstract Task‐based execution of graph workloads allows various ordered and unordered implementations, with tasks representing dependencies between graph vertices and edges. This work explores graph algorithms in the context of ordered and unordered task‐based implementations, that trade‐off work‐efficiency with parallelism. The monotonicity of convergent graph solutions is the reason behind the trade‐off between work‐efficiency and parallelism. This trade‐off results in variable performance‐based choices within and across different machines (CPUs and GPUs), graph algorithms, implementations (ordered, relaxed, and unordered). Input graphs also augment this choice space, with this work analyzing temporally changing graphs in addition to the static graphs explored by prior works. These algorithmic and architectural choices are first explored in this work, and it is seen that different graph workload‐input combinations perform optimally on diverse architectural configurations. The resulting choice space is analyzed and this work represents it in the form of characteristic variables that correlate with each choice space. Using these characteristic variables, this work proposes analytical and neural network models to correlate these choice spaces to find the best performing implementation. The variables and the prediction models proposed in this work are also integrated with a state‐of‐the‐art performance predictor on a multiaccelerator setup, and shows geometric performance gains of 54% on a CPU, 14% on a GPU, and 31.5% in a multiaccelerator setup over baseline implementations without performance prediction. 
    more » « less
  5. null (Ed.)
    Counting homomorphisms of a constant sized pattern graph H in an input graph G is a fundamental computational problem. There is a rich history of studying the complexity of this problem, under various constraints on the input G and the pattern H. Given the significance of this problem and the large sizes of modern inputs, we investigate when near-linear time algorithms are possible. We focus on the case when the input graph has bounded degeneracy, a commonly studied and practically relevant class for homomorphism counting. It is known from previous work that for certain classes of H, H-homomorphisms can be counted exactly in near-linear time in bounded degeneracy graphs. Can we precisely characterize the patterns H for which near-linear time algorithms are possible? We completely resolve this problem, discovering a clean dichotomy using fine-grained complexity. Let m denote the number of edges in G. We prove the following: if the largest induced cycle in H has length at most 5, then there is an O(mlogm) algorithm for counting H-homomorphisms in bounded degeneracy graphs. If the largest induced cycle in H has length at least 6, then (assuming standard fine-grained complexity conjectures) there is a constant γ>0, such that there is no o(m1+γ) time algorithm for counting H-homomorphisms. 
    more » « less