skip to main content


Title: Improved systematics of lorikeets reflects their evolutionary history and frames conservation priorities
A well-supported genus-level classification of any group of organisms underpins downstream understanding of its evolutionary biology and enhances the role of phylogenetic diversity in guiding its conservation and management. The lorikeets (Psittaciformes: Loriini) are parrots for which genus-level systematics (phylogenetic relationships and classification) has long been unstable and unsatisfactory. Instability has manifested through frequently changing compositions of some genera (e.g. Trichoglossus and Psitteuteles). Other genera (e.g. Charmosyna, Vini) have become so large that their phenotypic heterogeneity alone at least questions whether they are monophyletic assemblages that genera should comprise. Recent molecular phylogenetic and phenotypic studies have improved the framework with which to rationalise genus-level systematics in lorikeets but some trenchant uncertainty has remained. Here we utilise published genomic data and tetrahedral analysis of plumage colour to develop a full review of the genus-level classification of lorikeets. Using existing phylogenetic relationships and a newly estimated time-calibrated tree for lorikeets, we show where paraphyletic assemblages have misled the classification of genera. We assign six species to three new genera and six other species to four previously described generic names that have been in synonymy in recent literature. Our taxonomic revision brings a new perspective informing and guiding the conservation and management of the lorikeets and their evolutionary biology.  more » « less
Award ID(s):
1655736
NSF-PAR ID:
10183939
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Emu
ISSN:
1448-5540
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Xiphosurans are aquatic chelicerates with a fossil record extending into the Early Ordovician and known from a total of 88 described species, four of which are extant. Known for their apparent morphological conservatism, for which they have gained notoriety as supposed ‘living fossils’, recent analyses have demonstrated xiphosurans to have an ecologically diverse evolutionary history, with several groups moving into non-marine environments and developing morphologies markedly different from those of the modern species. The combination of their long evolutionary and complex ecological history along with their paradoxical patterns of morphological stasis in some clades and experimentation among others has resulted in Xiphosura being of particular interest for macroevolutionary study. Phylogenetic analyses have shown the current taxonomic framework for Xiphosura—set out in the Treatise of Invertebrate Paleontology in 1955—to be outdated and in need of revision, with several common genera such as Paleolimulus Dunbar, 1923 and Limulitella Størmer, 1952 acting as wastebasket taxa. Here, an expanded xiphosuran phylogeny is presented, comprising 58 xiphosuran species as part of a 158 taxon chelicerate matrix coded for 259 characters. Analysing the matrix under both Bayesian inference and parsimony optimisation criteria retrieves a concordant tree topology that forms the basis of a genus-level systematic revision of xiphosuran taxonomy. The genera Euproops Meek, 1867, Belinurus König, 1820, Paleolimulus , Limulitella , and Limulus are demonstrated to be non-monophyletic and the previously synonymized genera Koenigiella Raymond, 1944 and Prestwichianella Cockerell, 1905 are shown to be valid. In addition, nine new genera ( Andersoniella gen. nov. , Macrobelinurus gen. nov. , and Parabelinurus gen. nov. in Belinurina; Norilimulus gen. nov. in Paleolimulidae; Batracholimulus gen. nov. and Boeotiaspis gen. nov. in Austrolimulidae; and Allolimulus gen. nov., Keuperlimulus gen. nov., and Volanalimulus gen. nov. in Limulidae) are erected to accommodate xiphosuran species not encompassed by existing genera. One new species, Volanalimulus madagascarensis gen. et sp. nov., is also described. Three putative xiphosuran genera— Elleria Raymond, 1944, Archeolimulus Chlupáč, 1963, and Drabovaspis Chlupáč, 1963—are determined to be non-xiphosuran arthropods and as such are removed from Xiphosura. The priority of Belinurus König, 1820 over Bellinurus Pictet, 1846 is also confirmed. This work is critical for facilitating the study of the xiphosuran fossil record and is the first step in resolving longstanding questions regarding the geographic distribution of the modern horseshoe crab species and whether they truly represent ‘living fossils’. Understanding the long evolutionary history of Xiphosura is vital for interpreting how the modern species may respond to environmental change and in guiding conservation efforts. 
    more » « less
  2. Abstract

    Uncovering the evolutionary history of the subfamilies Ectatomminae and Heteroponerinae, or ectaheteromorphs, is key to understanding a major branch of the ant tree of life. Despite their diversity and ecological importance, phylogenetic relationships in the group have not been well explored. One particularly suitable tool for resolving phylogeny is the use of ultraconserved elements (UCEs), which have been shown to be ideal markers at a variety of evolutionary time scales. In the present study, we enriched and sequenced 2,127 UCEs from 135 specimens of ectaheteromorph ants and investigated phylogeny using a variety of model-based phylogenomic methods. Trees recovered from partitioned maximum-likelihood and species-tree analyses were well resolved and largely congruent. The results are consistent with an expanded concept of Ectatomminae that now includes the subfamily Heteroponerinae new synonym and its single tribe Heteroponerini new combination. Eleven monophyletic groups are recognized as genera: Acanthoponera, Alfariastatus revived, Boltonia Camacho and Feitosa new genus, Ectatomma, Gnamptogenys, Heteroponera, Holcoponerastatus revived, Poneracanthastatus revived, Rhytidoponera, Stictoponerastatus revived, and Typhlomyrmex. The new phylogenetic framework and classification proposed here will shed light on the study of Ectatomminae taxonomy and systematics, as well as on the morphological evolution of the groups that it comprises.

     
    more » « less
  3. Abstract

    Higher-level classifications often must account for monotypic taxa representing depauperate evolutionary lineages and lacking synapomorphies of their better-known, well-defined sister clades. In a ranked (Linnean) or unranked (phylogenetic) classification system, discovering such a depauperate taxon does not necessarily invalidate the rank classification of sister clades. Named higher taxa must be monophyletic to be phylogenetically valid. Ranked taxa above the species level should also maximize information content, diagnosability, and utility (e.g., in biodiversity conservation). In spider classification, families are the highest rank that is systematically catalogued, and incertae sedis is not allowed. Consequently, it is important that family-level taxa be well defined and informative. We revisit the classification problem of Orbipurae, an unranked suprafamilial clade containing the spider families Nephilidae, Phonognathidae, and Araneidae sensu stricto. We argue that, to maximize diagnosability, information content, conservation utility, and practical taxonomic considerations, this “splitting” scheme is superior to its recently proposed alternative, which lumps these families together as Araneidae sensu lato. We propose to redefine Araneidae and recognize a monogeneric spider family, Paraplectanoididae fam. nov. to accommodate the depauperate lineage Paraplectanoides. We present new subgenomic data to stabilize Orbipurae topology which also supports our proposed family-level classification. Our example from spiders demonstrates why classifications must be able to accommodate depauperate evolutionary lineages, for example, Paraplectanoides. Finally, although clade age should not be a criterion to determine rank, other things being equal, comparable ages of similarly ranked taxa do benefit comparative biology. [Classification, family rank, phylogenomics, systematics, monophyly, spider phylogeny.]

     
    more » « less
  4. Abstract

    Nylanderia(Emery) is one of the world's most diverse ant genera, with 123 described species worldwide and hundreds more undescribed. Fifteen globetrotting or invasive species have widespread distributions and are often encountered outside their native ranges. A molecular approach to understanding the evolutionary history and to revision ofNylanderiataxonomy is needed because historical efforts based on morphology have proven insufficient to define major lineages and delimit species boundaries, especially where adventive species are concerned. To address these problems, we generated the first genus‐wide genomic dataset ofNylanderiausing ultraconserved elements (UCEs) to resolve the phylogeny of major lineages, determine the age and origin of the genus, and describe global biogeographical patterns. Sampling from seven biogeographical regions revealed a Southeast Asian origin ofNylanderiain the mid‐Eocene and four distinct biogeographical clades in the Nearctic, the Neotropics, the Afrotropics/Malagasy region, and Australasia. The Nearctic and Neotropical clades are distantly related, indicating two separate dispersal events to the Americas between the late Oligocene and early Miocene. We also addressed the problem of misidentification that has characterized species‐level taxonomy inNylanderiaas a result of limited morphological variation in the worker caste by evaluating the integrity of species boundaries in six of the most widespreadNylanderiaspecies. We sampled across ranges of species in theN. bourbonicacomplex (N. bourbonica(Forel) + N. vaga(Forel)), theN. fulvacomplex (N. fulva(Mayr) + N. pubens(Forel)), and theN. guatemalensiscomplex (N. guatemalensis(Forel) + N. steinheili(Forel)) to clarify their phylogenetic placement. Deep splits within these complexes suggest that some species names – specificallyN. bourbonicaandN. guatemalensis– each are applied to multiple cryptic species. In exhaustively samplingNylanderiadiversity in the West Indies, a ‘hot spot’ for invasive taxa, we found five adventive species among 22 in the region; many remain morphologically indistinguishable from one another, despite being distantly related. We stress that overcoming the taxonomic impediment through the use of molecular phylogeny and revisionary study is essential for conservation and invasive species management.

     
    more » « less
  5. Abstract

    In the last decade and a half, advances in genetic sequencing technologies have revolutionized systematics, transforming the field from studying morphological characters or a few genetic markers, to genomic datasets in the phylogenomic era. A plethora of molecular phylogenetic studies on many taxonomic groups have come about, converging on, or refuting prevailing morphology or legacy‐marker‐based hypotheses about evolutionary affinities. Spider systematics has been no exception to this transformation and the inter‐relationships of several groups have now been studied using genomic data. About 51 500 extant spider species have been described, all with a conservative body plan, but innumerable morphological and behavioural peculiarities. Inferring the spider tree of life using morphological data has been a challenging task. Molecular data have corroborated many hypotheses of higher‐level relationships, but also resulted in new groups that refute previous hypotheses. In this review, we discuss recent advances in the reconstruction of the spider tree of life and highlight areas where additional effort is needed with potential solutions. We base this review on the most comprehensive spider phylogeny to date, representing 131 of the 132 spider families. To achieve this sampling, we combined six Sanger‐based markers with newly generated and publicly available genome‐scale datasets. We find that some inferred relationships between major lineages of spiders (such as Austrochiloidea, Palpimanoidea and Synspermiata) are robust across different classes of data. However, several new hypotheses have emerged with different classes of molecular data. We identify and discuss the robust and controversial hypotheses and compile this blueprint to design future studies targeting systematic revisions of these problematic groups. We offer an evolutionary framework to explore comparative questions such as evolution of venoms, silk, webs, morphological traits and reproductive strategies.

     
    more » « less