skip to main content


Title: Demonstration of a third-order hierarchy of topological states in a three-dimensional acoustic metamaterial
Classical wave systems have constituted an excellent platform for emulating complex quantum phenomena, such as demonstrating topological phenomena in photonics and acoustics. Recently, a new class of topological states localized in more than one dimension of a D -dimensional system, referred to as higher-order topological (HOT) states, has been reported, offering an even more versatile platform to confine and control classical radiation and mechanical motion. Here, we design and experimentally study a 3D topological acoustic metamaterial supporting third-order (0D) topological corner states along with second-order (1D) edge states and first-order (2D) surface states within the same topological bandgap, thus establishing a full hierarchy of nontrivial bulk polarization–induced states in three dimensions. The assembled 3D topological metamaterial represents the acoustic analog of a pyrochlore lattice made of interconnected molecules, and is shown to exhibit topological bulk polarization, leading to the emergence of boundary states.  more » « less
Award ID(s):
1809915
NSF-PAR ID:
10184034
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
13
ISSN:
2375-2548
Page Range / eLocation ID:
eaay4166
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Modern technological advances allow for the study of systems with additional synthetic dimensions. Higher-order topological insulators in topological states of matters have been pursued in lower physical dimensions by exploiting synthetic dimensions with phase transitions. While synthetic dimensions can be rendered in the photonics and cold atomic gases, little to no work has been succeeded in acoustics because acoustic wave-guides cannot be weakly coupled in a continuous fashion. Here, we formulate the theoretical principles and manufacture acoustic crystals composed of arrays of acoustic cavities strongly coupled through modulated channels to evidence one-dimensional (1D) and two-dimensional (2D) dynamic topological pumpings. In particular, the higher-order topological edge-bulk-edge and corner-bulk-corner transport are physically illustrated in finite-sized acoustic structures. We delineate the generated 2D and four-dimensional (4D) quantum Hall effects by calculating first and second Chern numbers and physically demonstrate robustness against the geometrical imperfections. Synthetic dimensions could provide a powerful way for acoustic topological wave steering and open up a platform to explore any continuous orbit in higher-order topological matter in dimensions four and higher. 
    more » « less
  2. null (Ed.)
    Acoustic/elastic metamaterials that rely on engineered microstructures instead of chemical composition enable a rich variety of extraordinary effective properties that are suited for various applications including vibration/noise isolation, high-resolution medical imaging, and energy harvesting and mitigation. However, the static nature of these elastic wave guides limits their potential for active elastic-wave guiding, as microstructure transformation remains a challenge to effectively apply in traditional elastic metamaterials due to the interplay of polarization and structural sensitivity. Here, a tunable, locally resonant structural waveguide is proposed and demonstrated for active vibration bandgap switching and elastic-wave manipulation between 1000–4000 Hz based on 3D printed building blocks of zinc-neutralized poly(ethylene- co -methacrylic acid) ionomer (Surlyn 9910). The ionomer exhibits shape memory behavior to enable rearrangement into new shape patterns through application of thermal stimuli that tunes mechanical performance in both space and time dimensions (4D metamaterial). The thermally induced shape-reorganization is programed to flip a series of frequency bands from passbands to bandgaps and vice versa . The continuously switched bandwidth can exceed 500 Hz. Consequently, altering the bandgap from “on” to “off” produces programmable elastic-wave propagation paths to achieve active wave guiding phenomena. An anisotropic cantilever-in-mass model is demonstrated to predict the self-adaptive dynamic responses of the printed structures with good agreement between the analytical work and experimental results. The tunable metamaterial-based waveguides illustrate the potential of 4D printed shape memory polymers in the designing and manufacturing of intelligent devices for elastic-wave control and vibration isolation. 
    more » « less
  3. Abstract

    Magnetism in topological materials creates phases exhibiting quantized transport phenomena with potential technological applications. The emergence of such phases relies on strong interaction between localized spins and the topological bands, and the consequent formation of an exchange gap. However, this remains experimentally unquantified in intrinsic magnetic topological materials. Here, this interaction is quantified in MnBi2Te4, a topological insulator with intrinsic antiferromagnetism. This is achieved by optically exciting Bi‐Te p states comprising the bulk topological bands and interrogating the consequent Mn 3d spin dynamics, using a multimodal ultrafast approach. Ultrafast electron scattering and magneto‐optic measurements show that the p states demagnetize via electron‐phonon scattering at picosecond timescales. Despite being energetically decoupled from the optical excitation, the Mn 3d spins, probed by resonant X‐ray scattering, are observed to disorder concurrently with the p spins. Together with atomistic simulations, this reveals that the exchange coupling between localized spins and the topological bands is at least 100 times larger than the superexchange interaction, implying an optimal exchange gap of at least 25 meV in the surface states. By quantifying this exchange coupling, this study validates the materials‐by‐design strategy of utilizing localized magnetic order to manipulate topological phases, spanning static to ultrafast timescales.

     
    more » « less
  4. Abstract We present a model of an externally driven acoustic metamaterial constituted of a nonlinear parallel array of coupled acoustic waveguides that supports logical phi-bits, classical analogues of quantum bits (qubit). Descriptions of correlated multiple phi-bit systems emphasize the importance of representations of phi-bit and multiple phi-bit vector states within the context of their corresponding Hilbert space. Experimental data are used to demonstrate the realization of the single phi-bit Hadamard gate and the phase shift gate. A three phi-bit system is also used to illustrate the development of multiple phi-bit gates as well as a simple quantum-like algorithm. These demonstrations set the stage for the implementation of a digital quantum analogue computing platform based on acoustic metamaterial that can implement quantum-like gates and may offer promise as an efficient platform for the simulation of materials. 
    more » « less
  5. BACKGROUND Optical sensing devices measure the rich physical properties of an incident light beam, such as its power, polarization state, spectrum, and intensity distribution. Most conventional sensors, such as power meters, polarimeters, spectrometers, and cameras, are monofunctional and bulky. For example, classical Fourier-transform infrared spectrometers and polarimeters, which characterize the optical spectrum in the infrared and the polarization state of light, respectively, can occupy a considerable portion of an optical table. Over the past decade, the development of integrated sensing solutions by using miniaturized devices together with advanced machine-learning algorithms has accelerated rapidly, and optical sensing research has evolved into a highly interdisciplinary field that encompasses devices and materials engineering, condensed matter physics, and machine learning. To this end, future optical sensing technologies will benefit from innovations in device architecture, discoveries of new quantum materials, demonstrations of previously uncharacterized optical and optoelectronic phenomena, and rapid advances in the development of tailored machine-learning algorithms. ADVANCES Recently, a number of sensing and imaging demonstrations have emerged that differ substantially from conventional sensing schemes in the way that optical information is detected. A typical example is computational spectroscopy. In this new paradigm, a compact spectrometer first collectively captures the comprehensive spectral information of an incident light beam using multiple elements or a single element under different operational states and generates a high-dimensional photoresponse vector. An advanced algorithm then interprets the vector to achieve reconstruction of the spectrum. This scheme shifts the physical complexity of conventional grating- or interference-based spectrometers to computation. Moreover, many of the recent developments go well beyond optical spectroscopy, and we discuss them within a common framework, dubbed “geometric deep optical sensing.” The term “geometric” is intended to emphasize that in this sensing scheme, the physical properties of an unknown light beam and the corresponding photoresponses can be regarded as points in two respective high-dimensional vector spaces and that the sensing process can be considered to be a mapping from one vector space to the other. The mapping can be linear, nonlinear, or highly entangled; for the latter two cases, deep artificial neural networks represent a natural choice for the encoding and/or decoding processes, from which the term “deep” is derived. In addition to this classical geometric view, the quantum geometry of Bloch electrons in Hilbert space, such as Berry curvature and quantum metrics, is essential for the determination of the polarization-dependent photoresponses in some optical sensors. In this Review, we first present a general perspective of this sensing scheme from the viewpoint of information theory, in which the photoresponse measurement and the extraction of light properties are deemed as information-encoding and -decoding processes, respectively. We then discuss demonstrations in which a reconfigurable sensor (or an array thereof), enabled by device reconfigurability and the implementation of neural networks, can detect the power, polarization state, wavelength, and spatial features of an incident light beam. OUTLOOK As increasingly more computing resources become available, optical sensing is becoming more computational, with device reconfigurability playing a key role. On the one hand, advanced algorithms, including deep neural networks, will enable effective decoding of high-dimensional photoresponse vectors, which reduces the physical complexity of sensors. Therefore, it will be important to integrate memory cells near or within sensors to enable efficient processing and interpretation of a large amount of photoresponse data. On the other hand, analog computation based on neural networks can be performed with an array of reconfigurable devices, which enables direct multiplexing of sensing and computing functions. We anticipate that these two directions will become the engineering frontier of future deep sensing research. On the scientific frontier, exploring quantum geometric and topological properties of new quantum materials in both linear and nonlinear light-matter interactions will enrich the information-encoding pathways for deep optical sensing. In addition, deep sensing schemes will continue to benefit from the latest developments in machine learning. Future highly compact, multifunctional, reconfigurable, and intelligent sensors and imagers will find applications in medical imaging, environmental monitoring, infrared astronomy, and many other areas of our daily lives, especially in the mobile domain and the internet of things. Schematic of deep optical sensing. The n -dimensional unknown information ( w ) is encoded into an m -dimensional photoresponse vector ( x ) by a reconfigurable sensor (or an array thereof), from which w′ is reconstructed by a trained neural network ( n ′ = n and w′   ≈   w ). Alternatively, x may be directly deciphered to capture certain properties of w . Here, w , x , and w′ can be regarded as points in their respective high-dimensional vector spaces ℛ n , ℛ m , and ℛ n ′ . 
    more » « less