skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: The Distributed Biological Observatory: A Change Detection Array in the Pacific Arctic
The Distributed Biological Observatory (DBO) is a change detection array for select ecosystem variables along eight sampling transects in the Pacific Arctic Region (PAR). The overall objective of the DBO is to provide for the detection and consistent monitoring of the biophysical responses to major reductions in seasonal sea ice and concomitant increases in seawater temperatures observed across the region. A key uncertainty is how the PAR marine ecosystem is responding to these shifts in the timing of spring sea-ice retreat and/or delays in fall sea-ice formation. Variations in upper ocean hydrography, stratification, light penetration, planktonic production, pelagic-benthic coupling, and sediment carbon cycling are all influenced by sea ice and temperature changes. Observations of reduced sea ice extent/duration and seawater warming are linked to shifts in species composition and abundance, as well as northward range expansions in some upper trophic predators (e.g. humpback whales and commercially harvested fish), generally with negative impacts on ice-dependent species such as ice-associated seals and walruses. Some distributional shifts may be driven by changes in lower trophic level productivity that directly cascade into upper trophic levels. This special issue is a result of the international effort by participating scientists to implement a coordinated DBO that will meet these needs to understand the ecosystem responses to changing sea ice and thermal regimes. The key geographical focus is on the biologically productive waters in the PAR that are influenced by the inflow of North Pacific water through Bering Strait. Papers in this volume are based upon selected biological measurements at multiple trophic levels, together with appropriate hydrographic surveys and satellite observations. The DBO is developing into a significant national and international change detection resource for the identification and consistent monitoring of marine biophysical responses to climate change, with ongoing plans to expand into a pan-Arctic biological observing network.  more » « less
Award ID(s):
1702137
PAR ID:
10184233
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Deepsea research
ISSN:
0967-0645
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Distributed Biological Observatory (DBO) is a change detection array for select ecosystem variables along eight sampling transects in the Pacific Arctic Region (PAR). The overall objective of the DBO is to provide for the detection and consistent monitoring of the biophysical responses to major reductions in seasonal sea ice and concomitant increases in seawater temperatures observed across the region. A key uncertainty is how the PAR marine ecosystem is responding to these shifts in the timing of spring sea-ice retreat and/or delays in fall sea-ice formation. Variations in upper ocean hydrography, stratification, light penetration, planktonic production, pelagic-benthic coupling, and sediment carbon cycling are all influenced by sea ice and temperature changes. Observations of reduced sea ice extent/duration and seawater warming are linked to shifts in species composition and abundance, as well as northward range expansions in some upper trophic predators (e.g. humpback whales and commercially harvested fish), generally with negative impacts on ice-dependent species such as ice-associated seals and walruses. Some distributional shifts may be driven by changes in lower trophic level productivity that directly cascade into upper trophic levels. This special issue is a result of the international effort by participating scientists to implement a coordinated DBO that will meet these needs to understand the ecosystem responses to changing sea ice and thermal regimes. The key geographical focus is on the biologically productive waters in the PAR that are influenced by the inflow of North Pacific water through Bering Strait. Papers in this volume are based upon selected biological measurements at multiple trophic levels, together with appropriate hydrographic surveys and satellite observations. The DBO is developing into a significant national and international change detection resource for the identification and consistent monitoring of marine biophysical responses to climate change, with ongoing plans to expand into a pan-Arctic biological observing network. 
    more » « less
  2. In response to dramatic seasonal sea ice loss and other physical changes influencing biological communities, a Distributed Biological Observatory (DBO) was proposed in 2009 as a “change detection array” to measure biological responses to physical variability along a latitudinal gradient extending from the northern Bering Sea to the Beaufort Sea in the Pacific Arctic sector. In 2010, the Pacific Arctic Group (PAG) initiated a pilot program, focused on developing standardized sampling protocols in five regions of high productivity, biodiversity, and rates of change. In 2012, an academic team received funding to sample all five DBO regions, with collateral support from the Interagency Arctic Research Policy Committee (IARPC) DBO Collaboration Team. The IARPC team met monthly from 2012 to 2016 and advanced the DBO from a pilot phase to an implementation phase, including 1) the addition of three new sampling regions in the Beaufort Sea, 2) the goal of linking the observatory to existing community-based observation programs, and 3) the development of a plan for a periodic Pacific Arctic Regional Marine Assessment (PARMA) beginning in 2018. The long-term future of the DBO will depend on active involvement of international and national partners focused on the common goal of improved pan-Arctic assessments of regional marine ecosystems in an era of rapid change. 
    more » « less
  3. Westergaard-Nielsen, Andreas (Ed.)
    Massive declines in sea ice cover and widespread warming seawaters across the Pacific Arctic region over the past several decades have resulted in profound shifts in marine ecosystems that have cascaded throughout all trophic levels. The Distributed Biological Observatory (DBO) provides sampling infrastructure for a latitudinal gradient of biological “hotspot” regions across the Pacific Arctic region, with eight sites spanning the northern Bering, Chukchi, and Beaufort Seas. The purpose of this study is two-fold: (a) to provide an assessment of satellite-based environmental variables for the eight DBO sites (including sea surface temperature (SST), sea ice concentration, annual sea ice persistence and the timing of sea ice breakup/formation, chlorophyll- a concentrations, primary productivity, and photosynthetically available radiation (PAR)) as well as their trends across the 2003–2020 time period; and (b) to assess the importance of sea ice presence/open water for influencing primary productivity across the region and for the eight DBO sites in particular. While we observe significant trends in SST, sea ice, and chlorophyll- a /primary productivity throughout the year, the most significant and synoptic trends for the DBO sites have been those during late summer and autumn (warming SST during October/November, later shifts in the timing of sea ice formation, and increases in chlorophyll- a /primary productivity during August/September). Those DBO sites where significant increases in annual primary productivity over the 2003–2020 time period have been observed include DBO1 in the Bering Sea (37.7 g C/m 2 /year/decade), DBO3 in the Chukchi Sea (48.0 g C/m 2 /year/decade), and DBO8 in the Beaufort Sea (38.8 g C/m 2 /year/decade). The length of the open water season explains the variance of annual primary productivity most strongly for sites DBO3 (74%), DBO4 in the Chukchi Sea (79%), and DBO6 in the Beaufort Sea (78%), with DBO3 influenced most strongly with each day of additional increased open water (3.8 g C/m 2 /year per day). These synoptic satellite-based observations across the suite of DBO sites will provide the legacy groundwork necessary to track additional and inevitable future physical and biological change across the region in response to ongoing climate warming. 
    more » « less
  4. Recent declines in sea ice extent and warming seawater temperatures in the Arctic have the potential to impact regional and pan-Arctic marine ecosystems. To investigate marine biological response to these key drivers and other environmental factors, we undertook a robust trend analysis of benthic macrofaunal populations and environmental drivers in the Bering Strait region. Our focus was on the waters of the northern Bering and southern Chukchi Seas, which are shallow (<100 m) and seasonally productive, with strong pelagic-benthic coupling between water column derived organic matter and the seafloor. Studies indicate that both in situ production and advection of upstream phytodetritus support persistent biologically productive regions, termed hotspots, in the greater Bering Strait region. The benthic marine ecosystem is dominated by macroinvertebrates (e.g., clams, polychaetes, and amphipods) that in turn serve as food resources for diving mammals and seabirds, thus allowing for changes to cascade strongly through the food web from prey to predator. During our study, the persistence of seasonal sea ice significantly declined; trend analyses indicate both earlier sea ice breakup and later fall freeze-up in recent years. When combined with warming seawater temperatures in the region, these changes have ramifications for water column processes that influence benthic faunal biomass and composition, which can transfer to upper trophic level predators. We studied these changes by evaluating time series sites in three benthic biomass hotspots starting in 1998 (Southeast Chukchi Sea region), 1999 (Chirikov Basin region), and 2000 (St. Lawrence Island Polynya region). We present these data within a broader evaluation of benthic biomass results from prior cruises dating as early as the 1970s. The current study focuses on the period 1998–2015 at sites occupied annually each July using CCGS Sir Wilfrid Laurier. Since 2010, these time series sites have become part of the international Distributed Biological Observatory (DBO), a network of standard time series stations and transect lines in the Pacific Arctic that is used for evaluating changes within the biological system. We found that these regions have experienced northward shifts in high benthic biomass and changes in dominant macrofaunal composition that are coincident with recent reduced sea ice cover and variable warming of seasonal water column temperatures. Hydrographic changes can influence chlorophyll a inventories in surface sediments and total organic carbon content, both of which are indicators of food supply to the benthos. In addition, sediment grain size reflects variable current flow that in turn influences faunal composition. Time series studies are essential for evaluating whether this region is transitioning or even reaching a “tipping point” that could shift the benthic-dominated system to a pelagic one, with large-scale ramifications for ecosystem structure in this highly productive Pacific Arctic ecosystem. 
    more » « less
  5. Ummenhofer, Caroline (Ed.)
    Changes in gray whale ( Eschrichtius robustus ) phenology and distribution are related to observed and hypothesized prey availability, bottom water temperature, salinity, sea ice persistence, integrated water column and sediment chlorophyll a , and patterns of wind-driven biophysical forcing in the northern Bering and eastern Chukchi seas. This portion of the Pacific Arctic includes four Distributed Biological Observatory (DBO) sampling regions. In the Bering Strait area, passive acoustic data showed marked declines in gray whale calling activity coincident with unprecedented wintertime sea ice loss there in 2017–2019, although some whales were seen there during DBO cruises in those years. In the northern Bering Sea, sightings during DBO cruises show changes in gray whale distribution coincident with a shrinking field of infaunal amphipods, with a significant decrease in prey abundance (r = -0.314, p<0.05) observed in the DBO 2 region over the 2010–2019 period. In the eastern Chukchi Sea, sightings during broad scale aerial surveys show that gray whale distribution is associated with localized areas of high infaunal crustacean abundance. Although infaunal crustacean prey abundance was unchanged in DBO regions 3, 4 and 5, a mid-decade shift in gray whale distribution corresponded to both: (i) a localized increase in infaunal prey abundance in DBO regions 4 and 5, and (ii) a correlation of whale relative abundance with wind patterns that can influence epi-benthic and pelagic prey availability. Specifically, in the northeastern Chukchi Sea, increased sighting rates (whales/km) associated with an ~110 km (60 nm) offshore shift in distribution was positively correlated with large scale and local wind patterns conducive to increased availability of krill. In the southern Chukchi Sea, gray whale distribution clustered in all years near an amphipod-krill ‘hotspot’ associated with a 50-60m deep trough. We discuss potential impacts of observed and inferred prey shifts on gray whale nutrition in the context of an ongoing unusual gray whale mortality event. To conclude, we use the conceptual Arctic Marine Pulses (AMP) model to frame hypotheses that may guide future research on whales in the Pacific Arctic marine ecosystem. 
    more » « less