skip to main content

This content will become publicly available on April 7, 2023

Title: Changes in gray whale phenology and distribution related to prey variability and ocean biophysics in the northern Bering and eastern Chukchi seas
Changes in gray whale ( Eschrichtius robustus ) phenology and distribution are related to observed and hypothesized prey availability, bottom water temperature, salinity, sea ice persistence, integrated water column and sediment chlorophyll a , and patterns of wind-driven biophysical forcing in the northern Bering and eastern Chukchi seas. This portion of the Pacific Arctic includes four Distributed Biological Observatory (DBO) sampling regions. In the Bering Strait area, passive acoustic data showed marked declines in gray whale calling activity coincident with unprecedented wintertime sea ice loss there in 2017–2019, although some whales were seen there during DBO cruises in those years. In the northern Bering Sea, sightings during DBO cruises show changes in gray whale distribution coincident with a shrinking field of infaunal amphipods, with a significant decrease in prey abundance (r = -0.314, p<0.05) observed in the DBO 2 region over the 2010–2019 period. In the eastern Chukchi Sea, sightings during broad scale aerial surveys show that gray whale distribution is associated with localized areas of high infaunal crustacean abundance. Although infaunal crustacean prey abundance was unchanged in DBO regions 3, 4 and 5, a mid-decade shift in gray whale distribution corresponded to both: (i) a localized increase in infaunal more » prey abundance in DBO regions 4 and 5, and (ii) a correlation of whale relative abundance with wind patterns that can influence epi-benthic and pelagic prey availability. Specifically, in the northeastern Chukchi Sea, increased sighting rates (whales/km) associated with an ~110 km (60 nm) offshore shift in distribution was positively correlated with large scale and local wind patterns conducive to increased availability of krill. In the southern Chukchi Sea, gray whale distribution clustered in all years near an amphipod-krill ‘hotspot’ associated with a 50-60m deep trough. We discuss potential impacts of observed and inferred prey shifts on gray whale nutrition in the context of an ongoing unusual gray whale mortality event. To conclude, we use the conceptual Arctic Marine Pulses (AMP) model to frame hypotheses that may guide future research on whales in the Pacific Arctic marine ecosystem. « less
; ; ; ; ;
Ummenhofer, Caroline
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Halliday, William David (Ed.)
    The Distributed Biological Observatory (DBO) was established to detect environmental changes in the Pacific Arctic by regular monitoring of biophysical responses in each of 8 DBO regions. Here we examine the occurrence of bowhead and beluga whale vocalizations in the western Beaufort Sea acquired by acoustic instruments deployed from September 2008-July 2014 and September 2016-October 2018 to examine inter-annual variability of these Arctic endemic species in DBO Region 6. Acoustic data were collected on an oceanographic mooring deployed in the Beaufort shelfbreak jet at ~71.4°N, 152.0°W. Spectrograms of acoustic data files were visually examined for the presence or absence of known signals of bowhead and beluga whales. Weekly averages of whale occurrence were compared with outputs of zooplankton, temperature and sea ice from the BIOMAS model to determine if any of these variables influenced whale occurrence. In addition, the dates of acoustic whale passage in the spring and fall were compared to annual sea ice melt-out and freeze-up dates to examine changes in phenology. Neither bowhead nor beluga whale migration times changed significantly in spring, but bowhead whales migrated significantly later in fall from 2008–2018. There were no clear relationships between bowhead whales and the environmental variables, suggesting that themore »DBO 6 region is a migratory corridor, but not a feeding hotspot, for this species. Surprisingly, beluga whale acoustic presence was related to zooplankton biomass near the mooring, but this is unlikely to be a direct relationship: there are likely interactions of environmental drivers that result in higher occurrence of both modeled zooplankton and belugas in the DBO 6 region. The environmental triggers that drive the migratory phenology of the two Arctic endemic cetacean species likely extend from Bering Sea transport of heat, nutrients and plankton through the Chukchi and into the Beaufort Sea.« less
  2. Incarbona, Alessandro (Ed.)
    Unusually warm conditions recently observed in the Pacific Arctic region included a dramatic loss of sea ice cover and an enhanced inflow of warmer Pacific-derived waters. Moored sediment traps deployed at three biological hotspots of the Distributed Biological Observatory (DBO) during this anomalously warm period collected sinking particles nearly continuously from June 2017 to July 2019 in the northern Bering Sea (DBO2) and in the southern Chukchi Sea (DBO3), and from August 2018 to July 2019 in the northern Chukchi Sea (DBO4). Fluxes of living algal cells, chlorophyll a (chl a ), total particulate matter (TPM), particulate organic carbon (POC), and zooplankton fecal pellets, along with zooplankton and meroplankton collected in the traps, were used to evaluate spatial and temporal variations in the development and composition of the phytoplankton and zooplankton communities in relation to sea ice cover and water temperature. The unprecedented sea ice loss of 2018 in the northern Bering Sea led to the export of a large bloom dominated by the exclusively pelagic diatoms Chaetoceros spp. at DBO2. Despite this intense bloom, early sea ice breakup resulted in shorter periods of enhanced chl a and diatom fluxes at all DBO sites, suggesting a weaker biological pump undermore »reduced ice cover in the Pacific Arctic region, while the coincident increase or decrease in TPM and POC fluxes likely reflected variations in resuspension events. Meanwhile, the highest transport of warm Pacific waters during 2017–2018 led to a dominance of the small copepods Pseudocalanus at all sites. Whereas the export of ice-associated diatoms during 2019 suggested a return to more typical conditions in the northern Bering Sea, the impact on copepods persisted under the continuously enhanced transport of warm Pacific waters. Regardless, the biological pump remained strong on the shallow Pacific Arctic shelves.« less
  3. Abstract Background

    Climate change is warming the Arctic faster than the rest of the planet. Shifts in whale migration timing have been linked to climate change in temperate and sub-Arctic regions, and evidence suggests Bering–Chukchi–Beaufort (BCB) bowhead whales (Balaena mysticetus) might be overwintering in the Canadian Beaufort Sea.


    We used an 11-year timeseries (spanning 2009–2021) of BCB bowhead whale presence in the southern Chukchi Sea (inferred from passive acoustic monitoring) to explore relationships between migration timing and sea ice in the Chukchi and Bering Seas.


    Fall southward migration into the Bering Strait was delayed in years with less mean October Chukchi Sea ice area and earlier in years with greater sea ice area (p = 0.04, r2 = 0.40). Greater mean October–December Bering Sea ice area resulted in longer absences between whales migrating south in the fall and north in the spring (p < 0.01, r2 = 0.85). A stepwise shift after 2012–2013 shows some whales are remaining in southern Chukchi Sea rather than moving through the Bering Strait and into the northwestern Bering Sea for the winter. Spring northward migration into the southern Chukchi Sea was earlier in years with less mean January–March Chukchi Sea ice area and delayed in years with greater sea ice area (p < 0.01, r2 = 0.82).

    more »Conclusions

    As sea ice continues to decline, northward spring-time migration could shift earlier or more bowhead whales may overwinter at summer feeding grounds. Changes to bowhead whale migration could increase the overlap with ships and impact Indigenous communities that rely on bowhead whales for nutritional and cultural subsistence.

    « less
  4. Frontalini, Fabrizio (Ed.)
    Ostracoda (bivalved Crustacea) comprise a significant part of the benthic meiofauna in the Pacific-Arctic region, including more than 50 species, many with identifiable ecological tolerances. These species hold potential as useful indicators of past and future ecosystem changes. In this study, we examined benthic ostracodes from nearly 300 surface sediment samples, >34,000 specimens, from three regions—the northern Bering, Chukchi and Beaufort Seas—to establish species’ ecology and distribution. Samples were collected during various sampling programs from 1970 through 2018 on the continental shelves at 20 to ~100m water depth. Ordination analyses using species’ relative frequencies identified six species, Normanicythere leioderma , Sarsicytheridea bradii , Paracyprideis pseudopunctillata , Semicytherura complanata , Schizocythere ikeyai , and Munseyella mananensis , as having diagnostic habitat ranges in bottom water temperatures, salinities, sediment substrates and/or food sources. Species relative abundances and distributions can be used to infer past bottom environmental conditions in sediment archives for paleo-reconstructions and to characterize potential changes in Pacific-Arctic ecosystems in future sampling studies. Statistical analyses further showed ostracode assemblages grouped by the summer water masses influencing the area. Offshore-to-nearshore transects of samples across different water masses showed that complex water mass characteristics, such as bottom temperature, productivity, as well as sedimentmore »texture, influenced the relative frequencies of ostracode species over small spatial scales. On the larger biogeographic scale, synoptic ordination analyses showed dominant species— N . leioderma (Bering Sea), P . pseudopunctillata (offshore Chukchi and Beaufort Seas), and S . bradii (all regions)—remained fairly constant over recent decades. However, during 2013–2018, northern Pacific species M . mananensis and S . ikeyai increased in abundance by small but significant proportions in the Chukchi Sea region compared to earlier years. It is yet unclear if these assemblage changes signify a meiofaunal response to changing water mass properties and if this trend will continue in the future. Our new ecological data on ostracode species and biogeography suggest these hypotheses can be tested with future benthic monitoring efforts.« less
  5. Abstract

    Climate change impacts are pronounced at high latitudes, where warming, reduced sea-ice-cover, and ocean acidification affect marine ecosystems. We review climate change impacts on two major gateways into the Arctic: the Bering and Chukchi seas in the Pacific and the Barents Sea and Fram Strait in the Atlantic. We present scenarios of how changes in the physical environment and prey resources may affect commercial fish populations and fisheries in these high-latitude systems to help managers and stakeholders think about possible futures. Predicted impacts include shifts in the spatial distribution of boreal species, a shift from larger, lipid-rich zooplankton to smaller, less nutritious prey, with detrimental effects on fishes that depend on high-lipid prey for overwinter survival, shifts from benthic- to pelagic-dominated food webs with implications for upper trophic levels, and reduced survival of commercially important shellfish in waters that are increasingly acidic. Predicted changes are expected to result in disruptions to existing fisheries, the emergence of new fisheries, new challenges for managing transboundary stocks, and possible conflicts among resource users. Some impacts may be irreversible, more severe, or occur more frequently under anthropogenic climate change than impacts associated with natural variability, posing additional management challenges.