skip to main content

Title: Unraveling phytoplankton community dynamics in the northern Chukchi and western Beaufort seas amid climate change
Abstract: The timing of sea ice retreat, light availability, and sea surface stratification largely control the phytoplankton community composition in the Chukchi Sea. This region is experiencing a significant warming trend, an overall decrease in sea ice cover, and a documented decline in annual sea ice persistence and thickness over the past several decades. The consequences of earlier seasonal sea ice retreat and a longer sea-ice-free season on phytoplankton community composition warrant investigation. We applied multivariate statistical techniques to elucidate the mechanisms that relate environmental variables to phytoplankton community composition in the Chukchi Sea using data collected during a single field campaign in the summer of 2011. Three phytoplankton groups emerged that were correlated with sea ice, sea surface temperature, nutrients, salinity, and light. Longer ice-free duration in a future Chukchi Sea will result in warmer sea surface temperatures and nutrient depletion, which we conclude will favor other phytoplankton types over larger diatoms. Plain Language Summary: In the Chukchi Sea, the seasonality of sea ice shapes ecosystem structure of the water column under both sea-ice-covered and sea-ice-free conditions. As such, phytoplankton community composition under both conditions responds to water column structure and nutrient availability. Owing to recent warming in the more » Arctic, sea ice is thinner and retreats earlier. To date, we do not fully understand the long-term consequences of earlier sea ice retreat on phytoplankton community composition and carbon biomass. To this end, we used environmental and phytoplankton data to relate how differences in ecosystem function under sea-ice-covered and sea-ice-free conditions govern phytoplankton communities. The results from this data set suggest that a future, sea-ice-free Chukchi Sea will exhibit lower phytoplankton biomass, impacting the food web and carbon export. « less
Authors:
; ;
Award ID(s):
1702137
Publication Date:
NSF-PAR ID:
10184237
Journal Name:
Geophysical research letters
Volume:
45
ISSN:
1944-8007
Sponsoring Org:
National Science Foundation
More Like this
  1. The Southern Ocean (SO) harbors some of the most intense phytoplankton blooms on Earth. Changes in temperature and iron availability are expected to alter the intensity of SO phytoplankton blooms, but little is known about how these changes will influence community composition and downstream biogeochemical processes. We performed light-saturated experimental manipulations on surface ocean microbial communities from McMurdo Sound in the Ross Sea to examine the effects of increased iron availability (+2 nM) and warming (+3 and +6 °C) on nutrient uptake, as well as the growth and transcriptional responses of two dominant diatoms, Fragilariopsis and Pseudo-nitzschia . We found that community nutrient uptake and primary productivity were elevated under both warming conditions without iron addition (relative to ambient −0.5 °C). This effect was greater than additive under concurrent iron addition and warming. Pseudo-nitzschia became more abundant under warming without added iron (especially at 6 °C), while Fragilariopsis only became more abundant under warming in the iron-added treatments. We attribute the apparent advantage Pseudo-nitzschia shows under warming to up-regulation of iron-conserving photosynthetic processes, utilization of iron-economic nitrogen assimilation mechanisms, and increased iron uptake and storage. These data identify important molecular and physiological differences between dominant diatom groups and add tomore »the growing body of evidence for Pseudo-nitzschia ’s increasingly important role in warming SO ecosystems. This study also suggests that temperature-driven shifts in SO phytoplankton assemblages may increase utilization of the vast pool of excess nutrients in iron-limited SO surface waters and thereby influence global nutrient distribution and carbon cycling.« less
  2. Continental slopes – steep regions between the shelf break and abyssal ocean – play key roles in the climatology and ecology of the Arctic Ocean. Here, through review and synthesis, we find that the narrow slope regions contribute to ecosystem functioning disproportionately to the size of the habitat area (∼6% of total Arctic Ocean area). Driven by inflows of sub-Arctic waters and steered by topography, boundary currents transport boreal properties and particle loads from the Atlantic and Pacific Oceans along-slope, thus creating both along and cross-slope connectivity gradients in water mass properties and biomass. Drainage of dense, saline shelf water and material within these, and contributions of river and meltwater also shape the characteristics of the slope domain. These and other properties led us to distinguish upper and lower slope domains; the upper slope (shelf break to ∼800 m) is characterized by stronger currents, warmer sub-surface temperatures, and higher biomass across several trophic levels (especially near inflow areas). In contrast, the lower slope has slower-moving currents, is cooler, and exhibits lower vertical carbon flux and biomass. Distinct zonation of zooplankton, benthic and fish communities result from these differences. Slopes display varying levels of system connectivity: (1) along-slope through property andmore »material transport in boundary currents, (2) cross-slope through upwelling of warm and nutrient rich water and down-welling of dense water and organic rich matter, and (3) vertically through shear and mixing. Slope dynamics also generate separating functions through (1) along-slope and across-slope fronts concentrating biological activity, and (2) vertical gradients in the water column and at the seafloor that maintain distinct physical structure and community turnover. At the upper slope, climatic change is manifested in sea-ice retreat, increased heat and mass transport by sub-Arctic inflows, surface warming, and altered vertical stratification, while the lower slope has yet to display evidence of change. Model projections suggest that ongoing physical changes will enhance primary production at the upper slope, with suspected enhancing effects for consumers. We recommend Pan-Arctic monitoring efforts of slopes given that many signals of climate change appear there first and are then transmitted along the slope domain.« less
  3. Abstract Over the last ten years, satellite and geographically constrained in situ observations largely focused on the northern hemisphere have suggested that annual phytoplankton biomass cycles cannot be fully understood from environmental properties controlling phytoplankton division rates (e.g., nutrients and light), as they omit the role of ecological and environmental loss processes (e.g., grazing, viruses, sinking). Here, we use multi-year observations from a very large array of robotic drifting floats in the Southern Ocean to determine key factors governing phytoplankton biomass dynamics over the annual cycle. Our analysis reveals seasonal phytoplankton accumulation (‘blooming’) events occurring during periods of declining modeled division rates, an observation that highlights the importance of loss processes in dictating the evolution of the seasonal cycle in biomass. In the open Southern Ocean, the spring bloom magnitude is found to be greatest in areas with high dissolved iron concentrations, consistent with iron being a well-established primary limiting nutrient in this region. Under ice observations show that biomass starts increasing in early winter, well before sea ice begins to retreat. The average theoretical sensitivity of the Southern Ocean to potential changes in seasonal nutrient and light availability suggests that a 10% change in phytoplankton division rate may bemore »associated with a 50% reduction in mean bloom magnitude and annual primary productivity, assuming simple changes in the seasonal magnitude of phytoplankton division rates. Overall, our results highlight the importance of quantifying and accounting for both division and loss processes when modeling future changes in phytoplankton biomass cycles.« less
  4. Mancinelli, Giorgio (Ed.)
    The expected reduction of ice algae with declining sea ice may prove to be detrimental to the Pacific Arctic ecosystem. Benthic organisms that rely on sea ice organic carbon (iPOC) sustain benthic predators such as the Pacific walrus ( Odobenus rosmarus divergens ). The ability to track the trophic transfer of iPOC is critical to understanding its value in the food web, but prior methods have lacked the required source specificity. We analyzed the H-Print index, based on biomarkers of ice algae versus phytoplankton contributions to organic carbon in marine predators, in Pacific walrus livers collected in 2012, 2014 and 2016 from the Northern Bering Sea (NBS) and Chukchi Sea. We paired these measurements with stable nitrogen isotopes ( δ 15 N) to estimate trophic position. We observed differences in the contribution of iPOC in Pacific walrus diet between regions, sexes, and age classes. Specifically, the contribution of iPOC to the diet of Pacific walruses was higher in the Chukchi Sea (52%) compared to the NBS (30%). This regional difference is consistent with longer annual sea ice persistence in the Chukchi Sea. Within the NBS, the contribution of iPOC to walrus spring diet was higher in females (~45%) compared tomore »males (~30%) for each year (p < 0.001), likely due to specific foraging behavior of females to support energetic demands associated with pregnancy and lactation. Within the Chukchi Sea, the iPOC contribution was similar between males and females, yet higher in juveniles than in adults. Despite differences in the origin of organic carbon fueling the system (sea ice versus pelagic derived carbon), the trophic position of adult female Pacific walruses was similar between the NBS and Chukchi Sea (3.2 and 3.5, respectively), supporting similar diets (i.e. clams). Given the higher quality of organic carbon from ice algae, the retreat of seasonal sea ice in recent decades may create an additional vulnerability for female and juvenile Pacific walruses and should be considered in management of the species.« less
  5. Abstract

    We review recent trends and projected future physical and chemical changes under climate change in transition zones between Arctic and Subarctic regions with a focus on the two major inflow gateways to the Arctic, one in the Pacific (i.e. Bering Sea, Bering Strait, and the Chukchi Sea) and the other in the Atlantic (i.e. Fram Strait and the Barents Sea). Sea-ice coverage in the gateways has been disappearing during the last few decades. Projected higher air and sea temperatures in these gateways in the future will further reduce sea ice, and cause its later formation and earlier retreat. An intensification of the hydrological cycle will result in less snow, more rain, and increased river runoff. Ocean temperatures are projected to increase, leading to higher heat fluxes through the gateways. Increased upwelling at the Arctic continental shelf is expected as sea ice retreats. The pH of the water will decline as more atmospheric CO2 is absorbed. Long-term surface nutrient levels in the gateways will likely decrease due to increased stratification and reduced vertical mixing. Some effects of these environmental changes on humans in Arctic coastal communities are also presented.