skip to main content


Title: The interactive effects of temperature and nutrients on a spring phytoplankton community
Abstract

A complex interplay of environmental variables impacts phytoplankton community composition and physiology. Temperature and nutrient availability are two principal factors driving phytoplankton growth and composition, but are often investigated independently and on individual species in the laboratory. To assess the individual and interactive effects of temperature and nutrient concentration on phytoplankton community composition and physiology, we altered both the thermal and nutrient conditions of a cold‐adapted spring phytoplankton community in Narragansett Bay, Rhode Island, when surface temperature was 2.6°C and chlorophyll > 9 μg L−1. Water was incubated in triplicate at −0.5°C, 2.6°C, and 6°C for 10 d. At each temperature, treatments included both nutrient amendments (N, P, Si addition) and controls (no macronutrients added). The interactive effects of temperature and resource availability altered phytoplankton growth and community structure. Nutrient amendments resulted in species sorting and communities dominated by larger species. Under replete nutrients, warming tripled phytoplankton growth rates, but under in situ nutrient conditions, increased temperature acted antagonistically, reducing growth rates by as much as 33%, suggesting communities became nutrient limited. The temperature–nutrient interplay shifted the relative proportions of each species within the phytoplankton community, resulting in more silica rich cells at decreasing temperatures, irrespective of nutrients, and C : N that varied based on resource availability, with nutrient limitation inducing a 47% increase in C : N at increasing temperatures. Our results illustrate how the temperature–nutrient interplay can alter phytoplankton community dynamics, with changes in temperature amplifying or exacerbating the nutrient effect with implications for higher trophic levels and carbon flux.

 
more » « less
Award ID(s):
1638834 1736635 1655221 1638804
NSF-PAR ID:
10363883
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
67
Issue:
3
ISSN:
0024-3590
Page Range / eLocation ID:
p. 634-645
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Marine microbial communities in coastal environments are subject to both seasonal fluctuations and anthropogenic alterations of environmental conditions. The separate influences of temperature and resource‐dependency on phytoplankton growth, community, and ecosystem metabolism are relatively well understood. However, winners and losers in the ocean are determined based on the interplay among often rapidly changing biological, chemical and physical drivers. The direct, indirect, and interactive effects of these conditions on planktonic food web structure and function are poorly constrained. Here, we investigated how simultaneous manipulation of temperature and nutrient availability affects trophic transfer from phytoplankton to herbivorous protists, and their resulting implications at the ecosystem level. Temperature directly affected herbivorous protist composition; ciliates dominated (66%) in colder treatment and dinoflagellates (60%) at warmer temperatures. Throughout the experiments, grazing rates were < 0.1 d−1, with higher rates at subzero temperatures. Overall, the nutrient–temperature interplay affected trophic transfer rates antagonistically when nutrients were amended, and synergistically, when nutrients were not added. This interaction resulted in higher percentages of primary production consumed under nutrient unamended compared to nutrient amended conditions. At the ecosystem level, these changes may determine the fate of primary production, with most of the production likely exported out of the pelagic zone in high‐temperature and nutrient conditions, while high‐temperature and low‐nutrient availability strengthened food web coupling and enhanced trophic transfer. These results imply that in warming oceans, management of coastal nutrient loading will be a critical determinant of the degree of primary production removal by microzooplankton and dependent ecosystem production.

     
    more » « less
  2. null (Ed.)
    The Southern Ocean (SO) harbors some of the most intense phytoplankton blooms on Earth. Changes in temperature and iron availability are expected to alter the intensity of SO phytoplankton blooms, but little is known about how these changes will influence community composition and downstream biogeochemical processes. We performed light-saturated experimental manipulations on surface ocean microbial communities from McMurdo Sound in the Ross Sea to examine the effects of increased iron availability (+2 nM) and warming (+3 and +6 °C) on nutrient uptake, as well as the growth and transcriptional responses of two dominant diatoms, Fragilariopsis and Pseudo-nitzschia . We found that community nutrient uptake and primary productivity were elevated under both warming conditions without iron addition (relative to ambient −0.5 °C). This effect was greater than additive under concurrent iron addition and warming. Pseudo-nitzschia became more abundant under warming without added iron (especially at 6 °C), while Fragilariopsis only became more abundant under warming in the iron-added treatments. We attribute the apparent advantage Pseudo-nitzschia shows under warming to up-regulation of iron-conserving photosynthetic processes, utilization of iron-economic nitrogen assimilation mechanisms, and increased iron uptake and storage. These data identify important molecular and physiological differences between dominant diatom groups and add to the growing body of evidence for Pseudo-nitzschia ’s increasingly important role in warming SO ecosystems. This study also suggests that temperature-driven shifts in SO phytoplankton assemblages may increase utilization of the vast pool of excess nutrients in iron-limited SO surface waters and thereby influence global nutrient distribution and carbon cycling. 
    more » « less
  3. Abstract

    Environmental changes can rapidly alter standing biomass in tundra plant communities; yet, to what extent can they modify plant‐community nutrient levels? Nutrient levels and their changes can affect biomass production, nutrient cycling rates and nutrient availability to herbivores. We examined how environmental perturbations alter Arctic plant‐community leaf nutrient concentrations (percentage of dry mass, i.e. resource quality) and nutrient pools (absolute mass per unit area, i.e. resource quantity).

    We experimentally imposed two different types of environmental perturbations in a high‐Arctic ecosystem in Svalbard, spanning three habitats differing in soil moisture and plant‐community composition. We mimicked both a pulse perturbation (a grubbing event by geese in spring) and a press perturbation (a constant level of summer warming).

    After 2 years of perturbations, we quantified peak‐season nitrogen and phosphorus concentrations in 1268 leaf samples from the most abundant vascular plant species. We derived community‐weighted nutrient concentrations and total amount of nutrients (pools) for whole plant communities and individual plant functional types (PFTs).

    Spring grubbing increased plant‐community nutrient concentrations in mesic (+13%) and wet (+8%), but not moist, habitats, and reduced nutrient pools in all habitats (moist: −49%; wet, mesic: −31% to −37%). Conversely, summer warming reduced plant‐community nutrient concentrations in mesic and moist (−10% to −12%), but not wet, habitats and increased nutrient pools in moist habitats (+50%).

    Fast‐growing PFTs exhibited nutrient‐concentration responses, while slow‐growing PFTs generally did not. Grubbing enhanced nutrient concentrations of forbs and grasses in wet habitats (+20%) and of horsetails and grasses in mesic habitats (+19–23%). Conversely, warming decreased nutrient concentrations of horsetails in wet habitats (−15%) and of grasses, horsetails and forbs in moist habitats (−12% to −15%). Nutrient pools held by each PFT were less affected, although the most abundant PFTs responded to perturbations.

    Synthesis. Arctic plant‐community nutrient levels can be rapidly altered by environmental changes, with consequences for short‐term process rates and plant‐herbivore interactions. Community‐level responses in nutrient concentrations and pools were opposing and differed among habitats and PFTs. Our findings have implications for how we understand herbivory‐ and warming‐induced shifts in the fine‐scaled distribution of resource quality and quantity within and across tundra habitats.

     
    more » « less
  4. Abstract

    Periphyton communities associated with submerged plant detritus contain interacting autotrophic and heterotrophic microbes, and are sites of extracellular enzymatic activity. The strength and nature of these interactions might be expected to change over time as microbial communities develop on plant litter. Microbial interactions and enzymatic activity can be altered by nutrient availability, suggesting that litter stoichiometry could also affect these phenomena.

    We grew wetland plants under ambient and nutrient‐enriched conditions to generate plant litter of differing nutrient content. In two experiments, we investigated: (1) the influence of algal photosynthesis on fungal and bacterial production and the activities of four extracellular enzymes throughout a 54‐day period of microbial colonisation and growth; and (2) the influence of litter stoichiometry on these relationships.

    Ambient and nutrient‐enriched standing‐dead plant litter was collected and then submerged in wetland pools to allow for natural microbial colonisation and growth. Litter samples were periodically retrieved and transported to the laboratory for experiments manipulating photosynthesis using the photosystem II inhibitor DCMU (which effectively prevents algal photosynthetic activity). Algal (14C‐bicarbonate), bacterial (3H‐leucine), and fungal (14C‐acetate) production, and β‐glucosidase, β‐xylosidase, leucine aminopeptidase, and phosphatase activities (MUF‐ or AMC‐labelled fluorogenic substrates) were measured under conditions of active and inhibited algal photosynthesis.

    Photosynthesis stimulated overall fungal and bacterial production in both experiments, although the strength of stimulation varied amongst sampling dates. Phosphatase activity was stimulated by photosynthesis during the first, but not the second, experiment. No other enzymatic responses to short‐term photosynthesis manipulations were observed.

    Microbial communities on high‐nutrient litter occasionally showed increased extracellular enzyme activity, fungal growth rates, and bacterial production compared to communities on non‐enriched litter, but algal and fungal production were not affected. Litter stoichiometry had no effects on fungal, bacterial, or enzymatic responses to photosynthesis, but the mean enzyme vector analysis angle (a measure of P‐ versus N‐acquiring enzyme activity) was positively correlated to litter N:P, suggesting that elevated litter N:P led to an increase in the relative activity of P‐acquiring enzymes.

    These results supported the hypothesis that algal photosynthesis strongly influences heterotrophic microbial activity on macrophyte leaf litter, especially that of fungi, throughout microbial community development. However, the strength of this photosynthetic stimulation does not generally depend on small differences in litter nutrient content.

    Stimulation of microbial heterotrophs by algal photosynthesis could drive diurnal shifts in periphyton community and aquatic ecosystem function, as well as linkinggreen(photoautotroph‐based) andbrown(detrital‐based) food webs.

     
    more » « less
  5. Abstract: The timing of sea ice retreat, light availability, and sea surface stratification largely control the phytoplankton community composition in the Chukchi Sea. This region is experiencing a significant warming trend, an overall decrease in sea ice cover, and a documented decline in annual sea ice persistence and thickness over the past several decades. The consequences of earlier seasonal sea ice retreat and a longer sea-ice-free season on phytoplankton community composition warrant investigation. We applied multivariate statistical techniques to elucidate the mechanisms that relate environmental variables to phytoplankton community composition in the Chukchi Sea using data collected during a single field campaign in the summer of 2011. Three phytoplankton groups emerged that were correlated with sea ice, sea surface temperature, nutrients, salinity, and light. Longer ice-free duration in a future Chukchi Sea will result in warmer sea surface temperatures and nutrient depletion, which we conclude will favor other phytoplankton types over larger diatoms. Plain Language Summary: In the Chukchi Sea, the seasonality of sea ice shapes ecosystem structure of the water column under both sea-ice-covered and sea-ice-free conditions. As such, phytoplankton community composition under both conditions responds to water column structure and nutrient availability. Owing to recent warming in the Arctic, sea ice is thinner and retreats earlier. To date, we do not fully understand the long-term consequences of earlier sea ice retreat on phytoplankton community composition and carbon biomass. To this end, we used environmental and phytoplankton data to relate how differences in ecosystem function under sea-ice-covered and sea-ice-free conditions govern phytoplankton communities. The results from this data set suggest that a future, sea-ice-free Chukchi Sea will exhibit lower phytoplankton biomass, impacting the food web and carbon export. 
    more » « less