Abstract Marine microbial communities in coastal environments are subject to both seasonal fluctuations and anthropogenic alterations of environmental conditions. The separate influences of temperature and resource‐dependency on phytoplankton growth, community, and ecosystem metabolism are relatively well understood. However, winners and losers in the ocean are determined based on the interplay among often rapidly changing biological, chemical and physical drivers. The direct, indirect, and interactive effects of these conditions on planktonic food web structure and function are poorly constrained. Here, we investigated how simultaneous manipulation of temperature and nutrient availability affects trophic transfer from phytoplankton to herbivorous protists, and their resulting implications at the ecosystem level. Temperature directly affected herbivorous protist composition; ciliates dominated (66%) in colder treatment and dinoflagellates (60%) at warmer temperatures. Throughout the experiments, grazing rates were < 0.1 d−1, with higher rates at subzero temperatures. Overall, the nutrient–temperature interplay affected trophic transfer rates antagonistically when nutrients were amended, and synergistically, when nutrients were not added. This interaction resulted in higher percentages of primary production consumed under nutrient unamended compared to nutrient amended conditions. At the ecosystem level, these changes may determine the fate of primary production, with most of the production likely exported out of the pelagic zone in high‐temperature and nutrient conditions, while high‐temperature and low‐nutrient availability strengthened food web coupling and enhanced trophic transfer. These results imply that in warming oceans, management of coastal nutrient loading will be a critical determinant of the degree of primary production removal by microzooplankton and dependent ecosystem production. 
                        more » 
                        « less   
                    
                            
                            The interactive effects of temperature and nutrients on a spring phytoplankton community
                        
                    
    
            Abstract A complex interplay of environmental variables impacts phytoplankton community composition and physiology. Temperature and nutrient availability are two principal factors driving phytoplankton growth and composition, but are often investigated independently and on individual species in the laboratory. To assess the individual and interactive effects of temperature and nutrient concentration on phytoplankton community composition and physiology, we altered both the thermal and nutrient conditions of a cold‐adapted spring phytoplankton community in Narragansett Bay, Rhode Island, when surface temperature was 2.6°C and chlorophyll > 9 μg L−1. Water was incubated in triplicate at −0.5°C, 2.6°C, and 6°C for 10 d. At each temperature, treatments included both nutrient amendments (N, P, Si addition) and controls (no macronutrients added). The interactive effects of temperature and resource availability altered phytoplankton growth and community structure. Nutrient amendments resulted in species sorting and communities dominated by larger species. Under replete nutrients, warming tripled phytoplankton growth rates, but under in situ nutrient conditions, increased temperature acted antagonistically, reducing growth rates by as much as 33%, suggesting communities became nutrient limited. The temperature–nutrient interplay shifted the relative proportions of each species within the phytoplankton community, resulting in more silica rich cells at decreasing temperatures, irrespective of nutrients, and C : N that varied based on resource availability, with nutrient limitation inducing a 47% increase in C : N at increasing temperatures. Our results illustrate how the temperature–nutrient interplay can alter phytoplankton community dynamics, with changes in temperature amplifying or exacerbating the nutrient effect with implications for higher trophic levels and carbon flux. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10363883
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 67
- Issue:
- 3
- ISSN:
- 0024-3590
- Page Range / eLocation ID:
- p. 634-645
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Autotrophic and heterotrophic microbes in stream biofilms dominate biogeochemical cycling and rely on nutrient and energy resources for growth and productivity. In the boreal forest, variation in these resources can originate from permafrost distribution and controls competition for nutrients between stream autotrophs and heterotrophs. We investigated which resources control nutrient uptake and metabolism in headwater stream biofilms of subarctic Alaska, USA, and how resource availability affects competition for inorganic nutrients. We hypothesized that the competitive outcome between autotrophs and heterotrophs for inorganic nutrients would be dependent on availability of organic C, or inorganic nutrients (N and P). To test our hypotheses, we measured resource limitation at the patch and reach scales along a permafrost gradient in interior Alaska. At the patch scale, nutrient diffusing substrata revealed that, secondary to light, N and P were colimiting to autotrophic growth, whereas C was primarily limiting to heterotrophic respiration. In the presence of labile C, heterotrophs exhibited a larger response to nutrient enrichment and outcompeted autotrophs for inorganic nutrients. At the reach scale, light availability had the largest influence on nutrient uptake, but inorganic nutrients were also important. The positive response to increased nutrient and C availability at the patch scale suggests that the predicted increase in exports into fluvial networks with permafrost degradation will alter biofilm structure and function. Ultimately, biofilm communities will shift to more heterotroph-dominated patches if heterotrophs outcompete autotrophs for inorganic nutrients. As permafrost thaws and nutrients and organic C mobilize into streams, nutrient uptake dynamics and competition within biofilms will be altered, affecting nutrient use and export.more » « less
- 
            Beisner, Beatrix E (Ed.)Abstract Consumer nutrient recycling influences aquatic ecosystem functioning by altering the movement and transformation of nutrients. In hypereutrophic reservoirs, zooplankton nutrient recycling has been considered negligible due to high concentrations of available nutrients. A comparative analysis ( Moody and Wilkinson, 2019) found that zooplankton communities in hypereutrophic lakes are dominated by nitrogen (N)-rich species, which the authors hypothesized would increase phosphorus (P) availability through excretion. However, zooplankton nutrient recycling likely varies over the course of a growing season due to changes in biomass, community composition and grazing pressure on phytoplankton. We quantified zooplankton, phytoplankton and nutrient concentration dynamics during the summer of 2019 in a temperate, hypereutrophic reservoir. We found that the estimated contribution of zooplankton excretion to the dissolved nutrient pool on a given day was equivalent to a substantial proportion (21–39%) of the dissolved inorganic P standing stock in early summer when P concentrations were low and limiting phytoplankton growth. Further, we found evidence that zooplankton affected phytoplankton size distributions through selective grazing of smaller phytoplankton cells likely affecting nutrient uptake and storage by phytoplankton. Overall, our results demonstrate zooplankton excretion in hypereutrophic reservoirs likely helped drive springtime phytoplankton dynamics through nutrient recycling while grazing influenced phytoplankton size distributions.more » « less
- 
            Coral reefs experience numerous environmental gradients affecting organismal physiology and species biodiversity, which ultimately impact community metabolism. This study shows that submarine groundwater discharge (SGD), a common natural environmental gradient in coastal ecosystems associated with decreasing temperatures, salinity and pH with increasing nutrients, has both direct and indirect effects on coral reef community metabolism by altering individual growth rates and community composition. Our data revealed that SGD exposure hindered the growth of two algae,Halimeda opuntiaandValonia fastigiata,by 67 and 200%, respectively, and one coral,Porites rus,by 20%. Community metabolic rates showed altered community production, respiration and calcification between naturally high and low exposure areas mostly due to differences in community identity (i.e. species composition), rather than a direct effect of SGD on physiology. Production and calcification were 1.5 and 6.5 times lower in assemblages representing high SGD communities regardless of environment. However, the compounding effect of community identity and SGD exposure on respiration resulted in the low SGD community exhibiting the highest respiration rates under higher SGD exposure. By demonstrating SGD’s role in altering community composition and metabolism, this research highlights the critical need to consider compounding environmental gradients (i.e. nutrients, salinity and temperature) in the broader context of ecosystem functions.more » « less
- 
            Climate warming increasingly drives changes in large-scale ocean physics and biogeochemistry, and affects the kinetics of biological reactions. Together these factors govern phytoplankton productivity, thereby shaping the responses of ocean carbon and nutrient cycles to global change. Here we bring together results from experimental, observational and modelling studies to highlight how interactive feedbacks between warming and nutrient limitation can affect the responses of biogeochemically critical marine primary producers. The availability of many bioactive elements in seawater will be altered markedly in the future, thereby shifting resource deficiencies. These modifications to nutrient limitation when compounded by concurrent warming can change phytoplankton optimum growth temperatures and elemental use efficiencies in group-specific and nutrient-specific ways. The biogeochemical impacts of these nutrient and warming interactions reflect a distinction between the thermal reactivity of major cellular structural elements like nitrogen (N) and catalytic micronutrients like iron (Fe). Integrating the mechanistic feedbacks between warming, nutrient availability and primary productivity into Earth system models is necessary to improve confidence in projections of ocean biogeochemical cycle transformations in a changing climate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
