skip to main content

Title: The Cosmic Ultraviolet Baryon Survey (CUBS) – I. Overview and the diverse environments of Lyman limit systems at z < 1
ABSTRACT We present initial results from the Cosmic Ultraviolet Baryon Survey (CUBS). CUBS is designed to map diffuse baryonic structures at redshift z ≲ 1 using absorption-line spectroscopy of 15 UV-bright QSOs with matching deep galaxy survey data. CUBS QSOs are selected based on their NUV brightness to avoid biases against the presence of intervening Lyman limit systems (LLSs) at zabs < 1. We report five new LLSs of $\log \, N({\mathrm{ H} \,{\small I}})/{{\rm cm^{-2}}}\gtrsim 17.2$ over a total redshift survey path-length of $\Delta \, z_{\mathrm{ LL}}=9.3$, and a number density of $n(z)=0.43_{-0.18}^{+0.26}$. Considering all absorbers with $\log \, N({{\mathrm{ H} \,{\small I}}})/{{\rm cm^{-2}}}\gt 16.5$ leads to $n(z)=1.08_{-0.25}^{+0.31}$ at zabs < 1. All LLSs exhibit a multicomponent structure and associated metal transitions from multiple ionization states such as C ii, C iii, Mg ii, Si ii, Si iii, and O vi absorption. Differential chemical enrichment levels as well as ionization states are directly observed across individual components in three LLSs. We present deep galaxy survey data obtained using the VLT-MUSE integral field spectrograph and the Magellan Telescopes, reaching sensitivities necessary for detecting galaxies fainter than $0.1\, L_*$ at d ≲ 300 physical kpc (pkpc) in all five fields. A diverse range of galaxy properties is seen around these LLSs, from a low-mass dwarf galaxy pair, a co-rotating gaseous halo/disc, a star-forming galaxy, a massive quiescent galaxy, to a galaxy group. The closest galaxies have projected distances ranging from d = 15 to 72 pkpc and intrinsic luminosities from ${\approx} 0.01\, L_*$ to ${\approx} 3\, L_*$. Our study shows that LLSs originate in a variety of galaxy environments and trace gaseous structures with a broad range of metallicities.  more » « less
Award ID(s):
1652522 1715692
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
498 to 520
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $\langle T \rangle =(2\pm 1) \times 10^4\,$K and modest non-thermal broadening of $\langle b_\mathrm{nt} \rangle =5\pm 3\,$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $160^{+140}_{-50}$ pc. While obtaining robust metallicity constraints for the low density, highly ionized phase remains challenging due to the uncertain $N\mathrm{(H\, {\small I})}$, we demonstrate that the cool-phase gas in LLSs has a median metallicity of $\mathrm{[\alpha /H]_{1/2}}=-0.7^{+0.1}_{-0.2}$, with a 16–84 percentile range of [α/H] = (−1.3, −0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/α], [N/α], and [Fe/α]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium. 
    more » « less
  2. ABSTRACT We present a detailed study of two partial Lyman limit systems (pLLSs) of neutral hydrogen column density $N_\mathrm{H\, I}\approx (1-3)\times 10^{16}\, \mathrm{cm}^{-2}$ discovered at $z$ = 0.5 in the Cosmic Ultraviolet Baryon Survey (CUBS). Available far-ultraviolet spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and optical echelle spectra from MIKE on the Magellan Telescopes enable a comprehensive ionization analysis of diffuse circumgalactic gas based on resolved kinematics and abundance ratios of atomic species spanning five different ionization stages. These data provide unambiguous evidence of kinematically aligned multiphase gas that masquerades as a single-phase structure and can only be resolved by simultaneous accounting of the full range of observed ionic species. Both systems are resolved into multiple components with inferred α-element abundance varying from [α/H] ≈−0.8 to near solar and densities spanning over two decades from log nH/cm−3 ≈ −2.2 to <−4.3. Available deep galaxy survey data from the CUBS program taken with VLT/MUSE, Magellan/LDSS3-C and Magellan/IMACS reveal that the $z$ = 0.47 system is located 55 kpc from a star-forming galaxy with prominent Balmer absorption of stellar mass ${{M_{\rm star}}}\approx 2\times 10^{10}\, {{M_{\odot}}}$, while the $z$ = 0.54 system resides in an overdense environment of 11 galaxies within 750 kpc in projected distance, with the most massive being a luminous red galaxy of ${{M_{\rm star}}}\approx 2\times 10^{11}\, {{M_{\odot}}}$ at 375 kpc. The study of these two pLLSs adds to an emerging picture of the complex, multiphase circumgalactic gas that varies in chemical abundances and density on small spatial scales in diverse galaxy environments. The inhomogeneous nature of metal enrichment and density revealed in observations must be taken into account in theoretical models of diffuse halo gas. 
    more » « less

    As part of our program to identify host galaxies of known z = 2–3 Mg ii absorbers with the Keck Cosmic Web Imager (KCWI), we discovered a compact group giving rise to a z = 2.431 DLA with ultrastrong Mg ii absorption in quasar field J234628+124859. The group consists of four star-forming galaxies within 8–28 kpc and v ∼ 40–340 km s−1 of each other, where tidal streams are weakly visible in deep HST imaging. The group geometric centre is D = 25 kpc from the quasar (D = 20–40 kpc for each galaxy). Galaxy G1 dominates the group (1.66L*, SFRFUV = 11.6 M⊙ yr−1) while G2, G3, and G4 are less massive (0.1–0.3L*, SFRFUV = 1.4–2.0 M⊙ yr−1). Using a VLT/UVES quasar spectrum covering the H i Lyman series and metal lines such as Mg ii, Si iii, and C iv, we characterized the kinematic structure and physical conditions along the line of sight with cloud-by-cloud multiphase Bayesian modelling. The absorption system has a total $\log (N({{{\rm H}\,\rm{\small I}}})/{\rm cm}^{-2})=20.53$ and an $N({{{\rm H}\,\rm{\small I}}})$-weighted mean metallicity of log (Z/Z⊙) = −0.68, with a very large Mg ii linewidth of Δv ∼ 700 km s−1. The highly kinematically complex profile is well modelled with 30 clouds across low- and intermediate-ionization phases with values ${13\lesssim \log (N({{{\rm H}\,\rm{\small I}}})/{\rm cm}^{-2})\lesssim 20}$ and −3 ≲ log (Z/Z⊙) ≲ 1. Comparing these properties to the galaxy properties, we infer a wide range of gaseous environments, including metal-rich outflows, metal-poor IGM accretion, and tidal streams from galaxy–galaxy interactions. This diversity of structures forms the intragroup medium around a complex compact group environment at the epoch of peak star formation activity. Surveys of low-redshift compact groups would benefit from obtaining a more complete census of this medium for characterizing evolutionary pathways.

    more » « less

    This paper presents a systematic study of the photoionization and thermodynamic properties of the cool circumgalactic medium (CGM) as traced by rest-frame ultraviolet absorption lines around 26 galaxies at redshift z ≲ 1. The study utilizes both high-quality far-ultraviolet and optical spectra of background QSOs and deep galaxy redshift surveys to characterize the gas density, temperature, and pressure of individual absorbing components and to resolve their internal non-thermal motions. The derived gas density spans more than three decades, from $\log (n_{\rm H}/{{\rm cm^{-3}}}) \approx -4$ to −1, while the temperature of the gas is confined in a narrow range of log (T/K) ≈ 4.3 ± 0.3. In addition, a weak anticorrelation between gas density and temperature is observed, consistent with the expectation of the gas being in photoionization equilibrium. Furthermore, decomposing the observed line widths into thermal and non-thermal contributions reveals that more than 30 per cent of the components at z ≲ 1 exhibit line widths driven by non-thermal motions, in comparison to <20 per cent found at z ≈ 2–3. Attributing the observed non-thermal line widths to intra-clump turbulence, we find that massive quenched galaxies on average exhibit higher non-thermal broadening/turbulent energy in their CGM compared to star-forming galaxies at z ≲ 1. Finally, strong absorption features from multiple ions covering a wide range of ionization energy (e.g. from Mg ii to O iv) can be present simultaneously in a single absorption system with kinematically aligned component structure, but the inferred pressure in different phases may differ by a factor of ≈10.

    more » « less

    In the Hubble Space Telescope/Cosmic Origins Spectrograph spectrum of the Seyfert 1 galaxy 2MASX J14292507+4518318, we have identified a narrow absorption line outflow system with a velocity of −151 km s−1. This outflow exhibits absorption troughs from the resonance states of ions like C iv, N v, S iv, and Si ii, as well as excited states from C ii* and Si ii*. Our investigation of the outflow involved measuring ionic column densities and conducting photoionization analysis. These allow the total column density of the outflow to be estimated as log NH = 19.84 cm−2, its ionization parameter to be log UH = −2.0, and its electron number density to be log ne = 2.75 cm−3. These measurements enabled us to determine the mass-loss rate and the kinetic luminosity of the outflow system to be $\dot{M}$ = 0.22 $\mathrm{ M}_{\odot } \, \mathrm{ yr}^{-1}$ and $\log \dot{E_{\mathrm{ K}}}$ = 39.3 erg s−1, respectively. We have also measured the location of the outflow system to be at ∼275 pc from the central source. This outflow does not contribute to the active galactic nucleus (AGN) feedback processes due to the low ratio of the outflow’s kinetic luminosity to the AGN’s Eddington luminosity ($\dot{E_{\mathrm{ K}}}/{L_{\mathrm{ Edd}}}\approx 0.00025 {{\, \rm per\, cent}}$). This outflow is remarkably similar to the two bipolar lobe outflows observed in the Milky Way by XMM–Newton and Chandra.

    more » « less