skip to main content

Title: The Cosmic Ultraviolet Baryon Survey (CUBS) – IV. The complex multiphase circumgalactic medium as revealed by partial Lyman limit systems
ABSTRACT We present a detailed study of two partial Lyman limit systems (pLLSs) of neutral hydrogen column density $N_\mathrm{H\, I}\approx (1-3)\times 10^{16}\, \mathrm{cm}^{-2}$ discovered at $z$ = 0.5 in the Cosmic Ultraviolet Baryon Survey (CUBS). Available far-ultraviolet spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and optical echelle spectra from MIKE on the Magellan Telescopes enable a comprehensive ionization analysis of diffuse circumgalactic gas based on resolved kinematics and abundance ratios of atomic species spanning five different ionization stages. These data provide unambiguous evidence of kinematically aligned multiphase gas that masquerades as a single-phase structure and can only be resolved by simultaneous accounting of the full range of observed ionic species. Both systems are resolved into multiple components with inferred α-element abundance varying from [α/H] ≈−0.8 to near solar and densities spanning over two decades from log nH/cm−3 ≈ −2.2 to <−4.3. Available deep galaxy survey data from the CUBS program taken with VLT/MUSE, Magellan/LDSS3-C and Magellan/IMACS reveal that the $z$ = 0.47 system is located 55 kpc from a star-forming galaxy with prominent Balmer absorption of stellar mass ${{M_{\rm star}}}\approx 2\times 10^{10}\, {{M_{\odot}}}$, while the $z$ = 0.54 system resides in an overdense environment of 11 galaxies within 750 kpc in projected distance, with more » the most massive being a luminous red galaxy of ${{M_{\rm star}}}\approx 2\times 10^{11}\, {{M_{\odot}}}$ at 375 kpc. The study of these two pLLSs adds to an emerging picture of the complex, multiphase circumgalactic gas that varies in chemical abundances and density on small spatial scales in diverse galaxy environments. The inhomogeneous nature of metal enrichment and density revealed in observations must be taken into account in theoretical models of diffuse halo gas. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Award ID(s):
1652522 1715692
Publication Date:
NSF-PAR ID:
10350066
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
508
Issue:
3
Page Range or eLocation-ID:
4359 to 4384
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $\langle T \rangle =(2\pm 1) \times 10^4\,$K and modest non-thermal broadening of $\langle b_\mathrm{nt} \rangle =5\pm 3\,$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $160^{+140}_{-50}$ pc. While obtaining robust metallicitymore »constraints for the low density, highly ionized phase remains challenging due to the uncertain $N\mathrm{(H\, {\small I})}$, we demonstrate that the cool-phase gas in LLSs has a median metallicity of $\mathrm{[\alpha /H]_{1/2}}=-0.7^{+0.1}_{-0.2}$, with a 16–84 percentile range of [α/H] = (−1.3, −0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/α], [N/α], and [Fe/α]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium.« less
  2. ABSTRACT We present initial results from the Cosmic Ultraviolet Baryon Survey (CUBS). CUBS is designed to map diffuse baryonic structures at redshift z ≲ 1 using absorption-line spectroscopy of 15 UV-bright QSOs with matching deep galaxy survey data. CUBS QSOs are selected based on their NUV brightness to avoid biases against the presence of intervening Lyman limit systems (LLSs) at zabs < 1. We report five new LLSs of $\log \, N({\mathrm{ H} \,{\small I}})/{{\rm cm^{-2}}}\gtrsim 17.2$ over a total redshift survey path-length of $\Delta \, z_{\mathrm{ LL}}=9.3$, and a number density of $n(z)=0.43_{-0.18}^{+0.26}$. Considering all absorbers with $\log \, N({{\mathrm{ H} \,{\small I}}})/{{\rm cm^{-2}}}\gt 16.5$ leads to $n(z)=1.08_{-0.25}^{+0.31}$ at zabs < 1. All LLSs exhibit a multicomponent structure and associated metal transitions from multiple ionization states such as C ii, C iii, Mg ii, Si ii, Si iii, and O vi absorption. Differential chemical enrichment levels as well as ionization states are directly observed across individual components in three LLSs. We present deep galaxy survey data obtained using the VLT-MUSE integral field spectrograph and the Magellan Telescopes, reaching sensitivities necessary for detecting galaxies fainter than $0.1\, L_*$ at d ≲ 300 physical kpc (pkpc) in all five fields. A diverse range of galaxy properties ismore »seen around these LLSs, from a low-mass dwarf galaxy pair, a co-rotating gaseous halo/disc, a star-forming galaxy, a massive quiescent galaxy, to a galaxy group. The closest galaxies have projected distances ranging from d = 15 to 72 pkpc and intrinsic luminosities from ${\approx} 0.01\, L_*$ to ${\approx} 3\, L_*$. Our study shows that LLSs originate in a variety of galaxy environments and trace gaseous structures with a broad range of metallicities.« less
  3. ABSTRACT We present and study a large suite of high-resolution cosmological zoom-in simulations, using the FIRE-2 treatment of mechanical and radiative feedback from massive stars, together with explicit treatment of magnetic fields, anisotropic conduction and viscosity (accounting for saturation and limitation by plasma instabilities at high β), and cosmic rays (CRs) injected in supernovae shocks (including anisotropic diffusion, streaming, adiabatic, hadronic and Coulomb losses). We survey systems from ultrafaint dwarf ($M_{\ast }\sim 10^{4}\, \mathrm{M}_{\odot }$, $M_{\rm halo}\sim 10^{9}\, \mathrm{M}_{\odot }$) through Milky Way/Local Group (MW/LG) masses, systematically vary uncertain CR parameters (e.g. the diffusion coefficient κ and streaming velocity), and study a broad ensemble of galaxy properties [masses, star formation (SF) histories, mass profiles, phase structure, morphologies, etc.]. We confirm previous conclusions that magnetic fields, conduction, and viscosity on resolved ($\gtrsim 1\,$ pc) scales have only small effects on bulk galaxy properties. CRs have relatively weak effects on all galaxy properties studied in dwarfs ($M_{\ast } \ll 10^{10}\, \mathrm{M}_{\odot }$, $M_{\rm halo} \lesssim 10^{11}\, \mathrm{M}_{\odot }$), or at high redshifts (z ≳ 1–2), for any physically reasonable parameters. However, at higher masses ($M_{\rm halo} \gtrsim 10^{11}\, \mathrm{M}_{\odot }$) and z ≲ 1–2, CRs can suppress SF and stellar masses by factorsmore »∼2–4, given reasonable injection efficiencies and relatively high effective diffusion coefficients $\kappa \gtrsim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$. At lower κ, CRs take too long to escape dense star-forming gas and lose their energy to collisional hadronic losses, producing negligible effects on galaxies and violating empirical constraints from spallation and γ-ray emission. At much higher κ CRs escape too efficiently to have appreciable effects even in the CGM. But around $\kappa \sim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$, CRs escape the galaxy and build up a CR-pressure-dominated halo which maintains approximate virial equilibrium and supports relatively dense, cool (T ≪ 106 K) gas that would otherwise rain on to the galaxy. CR ‘heating’ (from collisional and streaming losses) is never dominant.« less
  4. ABSTRACT

    Hydrogen emission lines can provide extensive information about star-forming galaxies in both the local and high-redshift Universe. We present a detailed Lyman continuum (LyC), Lyman-α (Lyα), and Balmer line (Hα and Hβ) radiative transfer study of a high-resolution isolated Milky Way simulation using the state-of-the-art Arepo-RT radiation hydrodynamics code with the SMUGGLE galaxy formation model. The realistic framework includes stellar feedback, non-equilibrium thermochemistry accounting for molecular hydrogen, and dust grain evolution in the interstellar medium (ISM). We extend our publicly available Cosmic Lyα Transfer (COLT) code with photoionization equilibrium Monte Carlo radiative transfer and various methodology improvements for self-consistent end-to-end (non-)resonant line predictions. Accurate LyC reprocessing to recombination emission requires modelling pre-absorption by dust ($f_\text{abs} \approx 27.5\,\rm{per\,\,cent}$), helium ionization ($f_\text{He} \approx 8.7\,\rm{per\,\,cent}$), and anisotropic escape fractions ($f_\text{esc} \approx 7.9\,\rm{per\,\,cent}$), as these reduce the available budget for hydrogen line emission ($f_\text{H} \approx 55.9\,\rm{per\,\,cent}$). We investigate the role of the multiphase dusty ISM, disc geometry, gas kinematics, and star formation activity in governing the physics of emission and escape, focusing on the time variability, gas-phase structure, and spatial spectral, and viewing angle dependence of the emergent photons. Isolated disc simulations are well-suited for comprehensive observational comparisons with local Hα surveys, butmore »would require a proper cosmological circumgalactic medium (CGM) environment as well as less dust absorption and rotational broadening to serve as analogs for high-redshift Lyα emitting galaxies. Future applications of our framework to next-generation cosmological simulations of galaxy formation including radiation-hydrodynamics that resolve ≲10 pc multiphase ISM and ≲1 kpc CGM structures will provide crucial insights and predictions for current and upcoming Lyα observations.

    « less
  5. ABSTRACT We revisit the question of ‘hot mode’ versus ‘cold mode’ accretion on to galaxies using steady-state cooling flow solutions and idealized 3D hydrodynamic simulations. We demonstrate that for the hot accretion mode to exist, the cooling time is required to be longer than the free-fall time near the radius where the gas is rotationally supported, Rcirc, i.e. the existence of the hot mode depends on physical conditions at the galaxy scale rather than on physical conditions at the halo scale. When allowing for the depletion of the halo baryon fraction relative to the cosmic mean, the longer cooling times imply that a virialized gaseous halo may form in halo masses below the threshold of $\sim 10^{12}\, {\rm M_{\odot }}$ derived for baryon-complete haloes. We show that for any halo mass there is a maximum accretion rate for which the gas is virialized throughout the halo and can accrete via the hot mode of ${\dot{M}}_{\rm crit}\approx 0.7(v_{\rm c}/100\, \rm km\ s^{-1})^{5.4}(R_{\rm circ}/10\, {\rm kpc})(Z/\, {\rm Z_{\odot }})^{-0.9}\, {\rm M_{\odot }}\, {\rm yr}^{-1}$, where Z and vc are the metallicity and circular velocity measured at Rcirc. For accretion rates $\gtrsim {\dot{M}}_{\rm crit}$ the volume-filling gas phase can in principle be ‘transonic’ –more »virialized in the outer halo but cool and free-falling near the galaxy. We compare ${\dot{M}}_{\rm crit}$ to the average star formation rate (SFR) in haloes at 0 < z < 10 implied by the stellar-mass–halo-mass relation. For a plausible metallicity evolution with redshift, we find that ${\rm SFR}\lesssim {\dot{M}}_{\rm crit}$ at most masses and redshifts, suggesting that the SFR of galaxies could be primarily sustained by the hot mode in halo masses well below the classic threshold of $\sim 10^{12}\, {\rm M_{\odot }}$.« less