skip to main content


Title: Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes
ABSTRACT We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass haloes hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, anisotropic streaming and diffusion along magnetic field lines, and collisional and streaming losses, with constant parallel diffusivity $\kappa \sim 3\times 10^{29}\, \mathrm{cm^2\ s^{-1}}$ chosen to match γ-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass haloes at z ≲ 1–2. The gas in these ‘CR-dominated’ haloes differs significantly from runs without CRs: the gas is primarily cool (a few ${\sim}10^{4}\,$ K), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the ‘low’ and ‘mid’ ions in this diffuse cool gas is dominated by photoionization, with O vi columns ${\gtrsim}10^{14.5}\, \mathrm{cm^{-2}}$ at distances ${\gtrsim}150\, \mathrm{kpc}$. CR and thermal gas pressure are locally anticorrelated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same haloes are primarily warm/hot ($T\gtrsim 10^{5}\,$K) with thermal pressure balancing gravity, collisional ionization dominates, O vi columns are lower and Ne viii higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase.  more » « less
Award ID(s):
1715216 1715101 1911233 1715847
NSF-PAR ID:
10184314
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
496
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
4221 to 4238
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present and study a large suite of high-resolution cosmological zoom-in simulations, using the FIRE-2 treatment of mechanical and radiative feedback from massive stars, together with explicit treatment of magnetic fields, anisotropic conduction and viscosity (accounting for saturation and limitation by plasma instabilities at high β), and cosmic rays (CRs) injected in supernovae shocks (including anisotropic diffusion, streaming, adiabatic, hadronic and Coulomb losses). We survey systems from ultrafaint dwarf ($M_{\ast }\sim 10^{4}\, \mathrm{M}_{\odot }$, $M_{\rm halo}\sim 10^{9}\, \mathrm{M}_{\odot }$) through Milky Way/Local Group (MW/LG) masses, systematically vary uncertain CR parameters (e.g. the diffusion coefficient κ and streaming velocity), and study a broad ensemble of galaxy properties [masses, star formation (SF) histories, mass profiles, phase structure, morphologies, etc.]. We confirm previous conclusions that magnetic fields, conduction, and viscosity on resolved ($\gtrsim 1\,$ pc) scales have only small effects on bulk galaxy properties. CRs have relatively weak effects on all galaxy properties studied in dwarfs ($M_{\ast } \ll 10^{10}\, \mathrm{M}_{\odot }$, $M_{\rm halo} \lesssim 10^{11}\, \mathrm{M}_{\odot }$), or at high redshifts (z ≳ 1–2), for any physically reasonable parameters. However, at higher masses ($M_{\rm halo} \gtrsim 10^{11}\, \mathrm{M}_{\odot }$) and z ≲ 1–2, CRs can suppress SF and stellar masses by factors ∼2–4, given reasonable injection efficiencies and relatively high effective diffusion coefficients $\kappa \gtrsim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$. At lower κ, CRs take too long to escape dense star-forming gas and lose their energy to collisional hadronic losses, producing negligible effects on galaxies and violating empirical constraints from spallation and γ-ray emission. At much higher κ CRs escape too efficiently to have appreciable effects even in the CGM. But around $\kappa \sim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$, CRs escape the galaxy and build up a CR-pressure-dominated halo which maintains approximate virial equilibrium and supports relatively dense, cool (T ≪ 106 K) gas that would otherwise rain on to the galaxy. CR ‘heating’ (from collisional and streaming losses) is never dominant. 
    more » « less
  2. ABSTRACT

    We investigate how cosmic rays (CRs) affect thermal and hydrostatic stability of circumgalactic (CGM) gas, in simulations with both CR streaming and diffusion. Local thermal instability can be suppressed by CR-driven entropy mode propagation, in accordance with previous analytic work. However, there is only a narrow parameter regime where this operates, before CRs overheat the background gas. As mass dropout from thermal instability causes the background density and hence plasma β ≡ Pg/PB to fall, the CGM becomes globally unstable. At the cool disc-to-hot−halo interface, a sharp drop in density boosts Alfven speeds and CR gradients, driving a transition from diffusive to streaming transport. CR forces and heating strengthen, while countervailing gravitational forces and radiative cooling weaken, resulting in a loss of both hydrostatic and thermal equilibrium. In lower β haloes, CR heating drives a hot, single-phase diffuse wind with velocities v ∝ (theat/tff)−1, which exceeds the escape velocity when theat/tff ≲ 0.4. In higher β haloes, where the Alfven Mach number is higher, CR forces drive multi-phase winds with cool, dense fountain flows and significant turbulence. These flows are CR dominated due to ‘trapping’ of CRs by weak transverse B-fields, and have the highest mass loading factors. Thus, local thermal instability can result in winds or fountain flows where either the heat or momentum input of CRs dominates.

     
    more » « less
  3. null (Ed.)
    Abstract We study the effects of cosmic rays (CRs) on outflows from star-forming galaxies in the circum and inter-galactic medium (CGM/IGM), in high-resolution, fully-cosmological FIRE-2 simulations (accounting for mechanical and radiative stellar feedback, magnetic fields, anisotropic conduction/viscosity/CR diffusion and streaming, and CR losses). We showed previously that massive (Mhalo ≳ 1011 M⊙), low-redshift (z ≲ 1 − 2) halos can have CR pressure dominate over thermal CGM pressure and balance gravity, giving rise to a cooler CGM with an equilibrium density profile. This dramatically alters outflows. Absent CRs, high gas thermal pressure in massive halos “traps” galactic outflows near the disk, so they recycle. With CRs injected in supernovae as modeled here, the low-pressure halo allows “escape” and CR pressure gradients continuously accelerate this material well into the IGM in “fast” outflows, while lower-density gas at large radii is accelerated in-situ into “slow” outflows that extend to >Mpc scales. CGM/IGM outflow morphologies are radically altered: they become mostly volume-filling (with inflow in a thin mid-plane layer) and coherently biconical from the disk to >Mpc. The CR-driven outflows are primarily cool (T ∼ 105 K) and low-velocity. All of these effects weaken and eventually vanish at lower halo masses (≲ 1011 M⊙) or higher redshifts (z ≳ 1 − 2), reflecting the ratio of CR to thermal+gravitational pressure in the outer halo. We present a simple analytic model which explains all of the above phenomena. We caution that these predictions may depend on uncertain CR transport physics. 
    more » « less
  4. ABSTRACT Heating of virialized gas by streaming cosmic rays (CRs) may be energetically important in galaxy haloes, groups, and clusters. We present a linear thermal stability analysis of plasmas heated by streaming CRs. We separately treat equilibria with and without background gradients, and with and without gravity. We include both CR streaming and diffusion along the magnetic-field direction. Thermal stability depends strongly on the ratio of CR pressure to gas pressure, which determines whether modes are isobaric or isochoric. Modes with $\boldsymbol {k \cdot B }\ne 0$ are strongly affected by CR diffusion. When the streaming time is shorter than the CR diffusion time, thermally unstable modes (with $\boldsymbol {k \cdot B }\ne 0$) are waves propagating at a speed ∝ the Alfvén speed. Halo gas in photoionization equilibrium is thermally stable independent of CR pressure, while gas in collisional ionization equilibrium is unstable for physically realistic parameters. In gravitationally stratified plasmas, the oscillation frequency of thermally overstable modes can be higher in the presence of CR streaming than the buoyancy/free-fall frequency. This may modify the critical tcool/tff at which multiphase gas is present. The criterion for convective instability of a stratified, CR-heated medium can be written in the familiar Schwarzschild form dseff/dz < 0, where seff is an effective entropy involving the gas and CR pressures. We discuss the implications of our results for the thermal evolution and multiphase structure of galaxy haloes, groups, and clusters. 
    more » « less
  5. null (Ed.)
    ABSTRACT We study the impact of cosmic rays (CRs) on the structure of virial shocks, using a large suite of high-resolution cosmological FIRE-2 simulations accounting for CR injection by supernovae. In Milky Way-mass, low-redshift (z ≲ 1−2) haloes, which are expected to form ‘hot haloes’ with slowly cooling gas in quasi-hydrostatic equilibrium (with a stable virial shock), our simulations without CRs do exhibit clear virial shocks. The cooler phase condensing out from inflows becomes pressure confined to overdense clumps, embedded in low-density, volume-filling hot gas with volume-weighted cooling time longer than inflow time. The gas thus transitions sharply from cool free-falling inflow, to hot and thermal-pressure supported at approximately the virial radius (≈Rvir), and the shock is quasi-spherical. With CRs, we previously argued that haloes in this particular mass and redshift range build up CR-pressure-dominated gaseous haloes. Here, we show that when CR pressure dominates over thermal pressure, there is no significant virial shock. Instead, inflowing gas is gradually decelerated by the CR pressure gradient and the gas is relatively subsonic out to and even beyond Rvir. Rapid cooling also maintains subvirial temperatures in the inflowing gas within ∼Rvir. 
    more » « less