skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cooling flows as a reference solution for the hot circumgalactic medium
ABSTRACT The circumgalactic medium (CGM) in $$\gtrsim 10^{12}\ \mathrm{M}_{\odot }$$ haloes is dominated by a hot phase ($$T \gtrsim 10^{6}$$ K). While many models exist for the hot gas structure, there is as yet no consensus. We compare cooling flow models, in which the hot CGM flows inwards due to radiative cooling, to the CGM of $$\sim 10^{12}{\,\rm to\,}10^{13}\ \mathrm{M}_{\odot }$$ haloes in galaxy formation simulations from the Feedback in Realistic Environments (FIRE) project at $$z\sim 0$$. The simulations include realistic cosmological evolution and feedback from stars but neglect AGN feedback. At both mass scales, CGM inflows are typically dominated by the hot phase rather than by the ‘precipitation’ of cold gas. Despite being highly idealized, we find that cooling flows describe $$\sim 10^{13}\ \mathrm{M}_{\odot }$$ haloes very well, with median agreement in the density and temperature profiles of $$\sim 20{{\ \rm per\ cent}}$$ and $$\sim 10{{\ \rm per\ cent}}$$, respectively. This indicates that stellar feedback has little impact on CGM scales in those haloes. For $$\sim 10^{12}\ \mathrm{M}_{\odot }$$ haloes, the thermodynamic profiles are also accurately reproduced in the outer CGM. For some of these lower-mass haloes, cooling flows significantly overpredict the hot gas density in the inner CGM. This could be due to multidimensional angular momentum effects not well captured by our one-dimensional cooling flow models and/or to the larger cold gas fractions in these regions. Turbulence, which contributes $$\sim 10{\!-\!}40{{\ \rm per\ cent}}$$ of the total pressure, must be included to accurately reproduce the temperature profiles. Overall, cooling flows predict entropy profiles in better agreement with the FIRE simulations than other idealized models in the literature.  more » « less
Award ID(s):
2307327 2108230
PAR ID:
10592865
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
540
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1017-1041
Size(s):
p. 1017-1041
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We analyse the different fates of the circumgalactic medium (CGM) in FIRE-2 cosmological simulations, focusing on the redshifts z = 0.25 and 2 representative of recent surveys. Our analysis includes 21 zoom-in simulations covering the halo mass range $$M_{\rm h}(z=0) \sim 10^{10} \!-\! 10^{12} \rm {\,M}_\odot$$. We analyse both where the gas ends up after first leaving the CGM (its ‘proximate’ fate) and its location at z = 0 (its ‘ultimate’ fate). Of the CGM at z = 2, about half is found in the ISM or stars of the central galaxy by z = 0 in Mh(z = 2) ∼ 5 × 1011 M⊙ haloes, but most of the CGM in lower mass haloes ends up in the intergalactic medium (IGM). This is so even though most of the CGM in Mh(z = 2) ∼ 5 × 1010 M⊙ haloes first accretes on to the central galaxy before being ejected into the IGM. On the other hand, most of the CGM mass at z = 0.25 remains in the CGM by z = 0 at all halo masses analysed. Of the CGM gas that subsequently accretes on to the central galaxy in the progenitors of Mh(z = 0) ∼ 1012 M⊙ haloes, most of it is cool (T ∼ 104 K) at z = 2 but hot (∼Tvir) at z ∼ 0.25, consistent with the expected transition from cold mode to hot mode accretion. Despite the transition in accretion mode, at both z = 0.25 and $$2 \, {\gtrsim} 80{{\ \rm per\ cent}}$$ of the cool gas in $$M_{\rm h} \gtrsim 10^{11} \rm {M}_\odot$$ haloes will accrete on to a galaxy. We find that the metallicity of CGM gas is typically a poor predictor of both its proximate and ultimate fates. This is because there is in general little correlation between the origin of CGM gas and its fate owing to substantial mixing while in the CGM. 
    more » « less
  2. ABSTRACT Recent searches for the hosts of z ∼ 4 damped Ly α absorbers (DLAs) have detected bright galaxies at distances of tens of kpc from the DLA. Using the FIRE-2 cosmological zoom simulations, we argue that these relatively large distances are due to a predominantly cool and neutral inner circumgalactic medium (CGM) surrounding high-redshift galaxies. The inner CGM is cool because of the short cooling time of hot gas in $${\lesssim}10^{12}\, {\rm M_{\odot }}$$ haloes, which implies that accretion and feedback energy are radiated quickly, while it is neutral due to high volume densities and column densities at high redshift that shield cool gas from photoionization. Our analysis predicts large DLA covering factors ($${\gtrsim}50{{\ \rm per\ cent}}$$) out to impact parameters ∼0.3[(1 + z)/5]3/2Rvir from the central galaxies at z ≳ 1, equivalent to a proper distance of $${\sim}21\, M_{12}^{1/3} \left(\left(1+z\right)/5\right)^{1/2}\, {\rm kpc}$$ (Rvir and M12 are the halo virial radius and mass in units of $$10^{12}\, {\rm M_{\odot }}$$, respectively). This implies that DLA covering factors at z ∼ 4 may be comparable to unity out to a distance ∼10 times larger than stellar half-mass radii. A predominantly neutral inner CGM in the early universe suggests that its mass and metallicity can be directly constrained by absorption surveys, without resorting to the large ionization corrections as required for ionized CGM. 
    more » « less
  3. ABSTRACT We revisit the question of ‘hot mode’ versus ‘cold mode’ accretion on to galaxies using steady-state cooling flow solutions and idealized 3D hydrodynamic simulations. We demonstrate that for the hot accretion mode to exist, the cooling time is required to be longer than the free-fall time near the radius where the gas is rotationally supported, Rcirc, i.e. the existence of the hot mode depends on physical conditions at the galaxy scale rather than on physical conditions at the halo scale. When allowing for the depletion of the halo baryon fraction relative to the cosmic mean, the longer cooling times imply that a virialized gaseous halo may form in halo masses below the threshold of $$\sim 10^{12}\, {\rm M_{\odot }}$$ derived for baryon-complete haloes. We show that for any halo mass there is a maximum accretion rate for which the gas is virialized throughout the halo and can accrete via the hot mode of $${\dot{M}}_{\rm crit}\approx 0.7(v_{\rm c}/100\, \rm km\ s^{-1})^{5.4}(R_{\rm circ}/10\, {\rm kpc})(Z/\, {\rm Z_{\odot }})^{-0.9}\, {\rm M_{\odot }}\, {\rm yr}^{-1}$$, where Z and vc are the metallicity and circular velocity measured at Rcirc. For accretion rates $$\gtrsim {\dot{M}}_{\rm crit}$$ the volume-filling gas phase can in principle be ‘transonic’ – virialized in the outer halo but cool and free-falling near the galaxy. We compare $${\dot{M}}_{\rm crit}$$ to the average star formation rate (SFR) in haloes at 0 < z < 10 implied by the stellar-mass–halo-mass relation. For a plausible metallicity evolution with redshift, we find that $${\rm SFR}\lesssim {\dot{M}}_{\rm crit}$$ at most masses and redshifts, suggesting that the SFR of galaxies could be primarily sustained by the hot mode in halo masses well below the classic threshold of $$\sim 10^{12}\, {\rm M_{\odot }}$$. 
    more » « less
  4. ABSTRACT We analyse the cold dark matter density profiles of 54 galaxy haloes simulated with Feedback In Realistic Environments (FIRE)-2 galaxy formation physics, each resolved within $$0.5{{\ \rm per\ cent}}$$ of the halo virial radius. These haloes contain galaxies with masses that range from ultrafaint dwarfs ($$M_\star \simeq 10^{4.5}\, \mathrm{M}_{\odot }$$) to the largest spirals ($$M_\star \simeq 10^{11}\, \mathrm{M}_{\odot }$$) and have density profiles that are both cored and cuspy. We characterize our results using a new, analytic density profile that extends the standard two-parameter Einasto form to allow for a pronounced constant density core in the resolved innermost radius. With one additional core-radius parameter, rc, this three-parameter core-Einasto profile is able to characterize our feedback-impacted dark matter haloes more accurately than other three-parameter profiles proposed in the literature. To enable comparisons with observations, we provide fitting functions for rc and other profile parameters as a function of both M⋆ and M⋆/Mhalo. In agreement with past studies, we find that dark matter core formation is most efficient at the characteristic stellar-to-halo mass ratio M⋆/Mhalo ≃ 5 × 10−3, or $$M_{\star } \sim 10^9 \, \mathrm{M}_{\odot }$$, with cores that are roughly the size of the galaxy half-light radius, rc ≃ 1−5 kpc. Furthermore, we find no evidence for core formation at radii $$\gtrsim 100\ \rm pc$$ in galaxies with M⋆/Mhalo < 5 × 10−4 or $$M_\star \lesssim 10^6 \, \mathrm{M}_{\odot }$$. For Milky Way-size galaxies, baryonic contraction often makes haloes significantly more concentrated and dense at the stellar half-light radius than DMO runs. However, even at the Milky Way scale, FIRE-2 galaxy formation still produces small dark matter cores of ≃ 0.5−2 kpc in size. Recent evidence for a ∼2 kpc core in the Milky Way’s dark matter halo is consistent with this expectation. 
    more » « less
  5. ABSTRACT Theoretical arguments and observations suggest that in massive haloes ($$>10^{12}\, {\rm M}_\odot$$), the circumgalactic medium (CGM) is dominated by a ‘hot’ phase with gas temperature near the virial temperature ($$T\approx T_{\rm vir}$$) and a quasi-hydrostatic pressure profile. Lower-mass haloes are however unlikely to be filled with a similar quasi-static hot phase, due to rapid radiative cooling. Using the FIRE (Feedback In Realistic Environment) cosmological zoom simulations, we demonstrate that the hot phase is indeed subdominant at inner radii ($$\lesssim 0.3 R_{\rm vir}$$) of $$\lesssim 10^{12}\, {\rm M}_\odot$$ haloes, and the inner CGM is instead filled with $$T\ll T_{\rm vir}$$ gas originating in outflows and inflows, with a turbulent velocity comparable to the halo virial velocity. The turbulent velocity thus exceeds the mass-weighted sound speed in the inner CGM, and the turbulence is supersonic. UV absorption features from such CGM trace the wide lognormal density distributions of the predominantly cool and turbulent volume-filling phase, in contrast with tracing localized cool ‘clouds’ embedded in a hot medium. We predict equivalent widths of $$W_\lambda \sim 2\lambda v_{\rm c}/c\sim 1$$Å for a broad range of strong UV and EUV transitions (Mg ii, C ii, C iv, Si ii–iv, O iii–v) in sightlines through inner CGM dominated by turbulent pressure of $$\lesssim L^\star$$ galaxies at redshifts $$0\le z\lesssim 2$$, where $$\lambda$$ is the transition wavelength, $$v_{\rm c}$$ is the circular velocity, and c is the speed of light. Comparison of our predictions with observational constraints suggests that star forming $$\lesssim$$ $$L^\star$$ and dwarf galaxies are generally dominated by turbulent pressure in their inner CGM, rather than by thermal pressure. The inner CGM surrounding these galaxies is thus qualitatively distinct from that around quenched galaxies and massive discs such as the Milky-Way and M31, in which thermal pressure likely dominates. 
    more » « less