skip to main content

Title: The maximum accretion rate of hot gas in dark matter haloes
ABSTRACT We revisit the question of ‘hot mode’ versus ‘cold mode’ accretion on to galaxies using steady-state cooling flow solutions and idealized 3D hydrodynamic simulations. We demonstrate that for the hot accretion mode to exist, the cooling time is required to be longer than the free-fall time near the radius where the gas is rotationally supported, Rcirc, i.e. the existence of the hot mode depends on physical conditions at the galaxy scale rather than on physical conditions at the halo scale. When allowing for the depletion of the halo baryon fraction relative to the cosmic mean, the longer cooling times imply that a virialized gaseous halo may form in halo masses below the threshold of $\sim 10^{12}\, {\rm M_{\odot }}$ derived for baryon-complete haloes. We show that for any halo mass there is a maximum accretion rate for which the gas is virialized throughout the halo and can accrete via the hot mode of ${\dot{M}}_{\rm crit}\approx 0.7(v_{\rm c}/100\, \rm km\ s^{-1})^{5.4}(R_{\rm circ}/10\, {\rm kpc})(Z/\, {\rm Z_{\odot }})^{-0.9}\, {\rm M_{\odot }}\, {\rm yr}^{-1}$, where Z and vc are the metallicity and circular velocity measured at Rcirc. For accretion rates $\gtrsim {\dot{M}}_{\rm crit}$ the volume-filling gas phase can in principle be ‘transonic’ – virialized in the outer halo but cool and free-falling near the galaxy. We compare ${\dot{M}}_{\rm crit}$ to the average star formation rate (SFR) in haloes at 0 < z < 10 implied by the stellar-mass–halo-mass relation. For a plausible metallicity evolution with redshift, we find that ${\rm SFR}\lesssim {\dot{M}}_{\rm crit}$ at most masses and redshifts, suggesting that the SFR of galaxies could be primarily sustained by the hot mode in halo masses well below the classic threshold of $\sim 10^{12}\, {\rm M_{\odot }}$.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
6042 to 6058
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We analyse the different fates of the circumgalactic medium (CGM) in FIRE-2 cosmological simulations, focusing on the redshifts z = 0.25 and 2 representative of recent surveys. Our analysis includes 21 zoom-in simulations covering the halo mass range $M_{\rm h}(z=0) \sim 10^{10} \!-\! 10^{12} \rm {\,M}_\odot$. We analyse both where the gas ends up after first leaving the CGM (its ‘proximate’ fate) and its location at z = 0 (its ‘ultimate’ fate). Of the CGM at z = 2, about half is found in the ISM or stars of the central galaxy by z = 0 in Mh(z = 2) ∼ 5 × 1011 M⊙ haloes, but most of the CGM in lower mass haloes ends up in the intergalactic medium (IGM). This is so even though most of the CGM in Mh(z = 2) ∼ 5 × 1010 M⊙ haloes first accretes on to the central galaxy before being ejected into the IGM. On the other hand, most of the CGM mass at z = 0.25 remains in the CGM by z = 0 at all halo masses analysed. Of the CGM gas that subsequently accretes on to the central galaxy in the progenitors of Mh(z = 0) ∼ 1012 M⊙ haloes, most of it is cool (T ∼ 104 K) at z = 2 but hot (∼Tvir) at z ∼ 0.25, consistent with the expected transition from cold mode to hot mode accretion. Despite the transition in accretion mode, at both z = 0.25 and $2 \, {\gtrsim} 80{{\ \rm per\ cent}}$ of the cool gas in $M_{\rm h} \gtrsim 10^{11} \rm {M}_\odot$ haloes will accrete on to a galaxy. We find that the metallicity of CGM gas is typically a poor predictor of both its proximate and ultimate fates. This is because there is in general little correlation between the origin of CGM gas and its fate owing to substantial mixing while in the CGM. 
    more » « less

    Previous studies of fueling black holes in galactic nuclei have argued (on scales ${\sim}0.01{-}1000\,$pc) accretion is dynamical with inflow rates $\dot{M}\sim \eta \, M_{\rm gas}/t_{\rm dyn}$ in terms of gas mass Mgas, dynamical time tdyn, and some η. But these models generally neglected expulsion of gas by stellar feedback, or considered extremely high densities where expulsion is inefficient. Studies of star formation, however, have shown on sub-kpc scales the expulsion efficiency fwind = Mejected/Mtotal scales with the gravitational acceleration as $(1-f_{\rm wind})/f_{\rm wind}\sim \bar{a}_{\rm grav}/\langle \dot{p}/m_{\ast }\rangle \sim \Sigma _{\rm eff}/\Sigma _{\rm crit}$ where $\bar{a}_{\rm grav}\equiv G\, M_{\rm tot}(\lt r)/r^{2}$ and $\langle \dot{p}/m_{\ast }\rangle$ is the momentum injection rate from young stars. Adopting this as the simplest correction for stellar feedback, $\eta \rightarrow \eta \, (1-f_{\rm wind})$, we show this provides a more accurate description of simulations with stellar feedback at low densities. This has immediate consequences, predicting the slope and normalization of the MBH − σ and MBH − Mbulge relation, LAGN −SFR relations, and explanations for outliers in compact Es. Most strikingly, because star formation simulations show expulsion is efficient (fwind ∼ 1) below total-mass surface density $M_{\rm tot}/\pi \, r^{2}\lt \Sigma _{\rm crit}\sim 3\times 10^{9}\, \mathrm{M}_{\odot }\, {\rm kpc^{-2}}$ (where $\Sigma _{\rm crit}=\langle \dot{p}/m_{\ast }\rangle /(\pi \, G)$), BH mass is predicted to specifically trace host galaxy properties above a critical surface brightness Σcrit (B-band $\mu _{\rm B}^{\rm crit}\sim 19\, {\rm mag\, arcsec^{-2}}$). This naturally explains why BH masses preferentially reflect bulge properties or central surface densities (e.g. $\Sigma _{1\, {\rm kpc}}$), not ‘total’ galaxy properties.

    more » « less
  3. ABSTRACT Recent searches for the hosts of z ∼ 4 damped Ly α absorbers (DLAs) have detected bright galaxies at distances of tens of kpc from the DLA. Using the FIRE-2 cosmological zoom simulations, we argue that these relatively large distances are due to a predominantly cool and neutral inner circumgalactic medium (CGM) surrounding high-redshift galaxies. The inner CGM is cool because of the short cooling time of hot gas in ${\lesssim}10^{12}\, {\rm M_{\odot }}$ haloes, which implies that accretion and feedback energy are radiated quickly, while it is neutral due to high volume densities and column densities at high redshift that shield cool gas from photoionization. Our analysis predicts large DLA covering factors (${\gtrsim}50{{\ \rm per\ cent}}$) out to impact parameters ∼0.3[(1 + z)/5]3/2Rvir from the central galaxies at z ≳ 1, equivalent to a proper distance of ${\sim}21\, M_{12}^{1/3} \left(\left(1+z\right)/5\right)^{1/2}\, {\rm kpc}$ (Rvir and M12 are the halo virial radius and mass in units of $10^{12}\, {\rm M_{\odot }}$, respectively). This implies that DLA covering factors at z ∼ 4 may be comparable to unity out to a distance ∼10 times larger than stellar half-mass radii. A predominantly neutral inner CGM in the early universe suggests that its mass and metallicity can be directly constrained by absorption surveys, without resorting to the large ionization corrections as required for ionized CGM. 
    more » « less

    We analyse the internal structure and dynamics of cosmic-web filaments connecting massive high-z haloes. Our analysis is based on a high-resolution arepo cosmological simulation zooming-in on three Mpc-scale filaments feeding three massive haloes of $\sim 10^{12}\, \text{M}_\odot$ at z ∼ 4, embedded in a large-scale sheet. Each filament is surrounded by a cylindrical accretion shock of radius $r_{\rm shock} \sim 50 \, {\rm kpc}$. The post-shock gas is in virial equilibrium within the potential well set by an isothermal dark-matter filament. The filament line-mass is $\sim 9\times 10^8\, \text{M}_\odot \, {\rm kpc}^{-1}$, the gas fraction within rshock is the universal baryon fraction, and the virial temperature is ∼7 × 105 K. These all match expectations from analytical models for filament properties as a function of halo mass and redshift. The filament cross-section has three radial zones. In the outer ‘thermal’ (T) zone, $r \ge 0.65 \, r_{\rm shock}$, inward gravity, and ram-pressure forces are overbalanced by outward thermal pressure forces, decelerating the inflowing gas and expanding the shock outwards. In the intermediate ‘vortex’ (V) zone, 0.25 ≤ r/rshock ≤ 0.65, the velocity field is dominated by a quadrupolar vortex structure due to offset inflow along the sheet through the post-shock gas. The outward force is dominated by centrifugal forces associated with these vortices, with additional contributions from global rotation and thermal pressure. Shear and turbulent forces associated with the vortices act inwards. The inner ‘stream’ (S) zone, $r \lt 0.25 \, r_{\rm shock}$, is a dense isothermal core, $T\sim 3 \times 10^4 \, {\rm K}$ and $n_{\rm H}\sim 0.01 \, {\rm cm^{-3}}$, defining the cold streams that feed galaxies. The core is formed by an isobaric cooling flow and is associated with a decrease in outward forces, though exhibiting both inflows and outflows.

    more » « less

    Observations indicate dust populations vary between galaxies and within them, suggesting a complex life cycle and evolutionary history. Here we investigate the evolution of galactic dust populations across cosmic time using a suite of cosmological zoom-in simulations from the Feedback in Realistic Environments project, spanning $M_{\rm vir}=10^{9-12}{M}_{\odot };\, M_{*}=10^{6-11}\, {M}_{\odot }$. Our simulations incorporate a dust evolution model that accounts for the dominant sources of dust production, growth, and destruction and follows the evolution of specific dust species. All galactic dust populations in our suite exhibit similar evolutionary histories, with gas–dust accretion being the dominant producer of dust mass for all but the most metal-poor galaxies. Similar to previous works, we find the onset of efficient gas–dust accretion occurs above a ‘critical’ metallicity threshold (Zcrit). Due to this threshold, our simulations reproduce observed trends between galactic D/Z and metallicity and element depletion trends in the interstellar medium. However, we find Zcrit varies between dust species due to differences in key element abundances, dust physical properties, and life cycle processes resulting in $Z_{\rm crit}\sim 0.05{\rm Z}_{\odot },\, 0.2{\rm Z}_{\odot },\, 0.5{\rm Z}_{\odot }$ for metallic iron, silicates, and carbonaceous dust, respectively. These variations could explain the lack of small carbonaceous grains observed in the Magellanic Clouds. We also find a delay between the onset of gas–dust accretion and when a dust population reaches equilibrium, which we call the equilibrium time-scale (τequil). The relation between τequil and the metal enrichment time-scale of a galaxy, determined by its recent evolutionary history, can contribute to the scatter in the observed relation between galactic D/Z and metallicity.

    more » « less