skip to main content

Title: Dissipative dark matter on FIRE – I. Structural and kinematic properties of dwarf galaxies
ABSTRACT We present the first set of cosmological baryonic zoom-in simulations of galaxies including dissipative self-interacting dark matter (dSIDM). These simulations utilize the Feedback In Realistic Environments galaxy formation physics, but allow the dark matter to have dissipative self-interactions analogous to standard model forces, parametrized by the self-interaction cross-section per unit mass, (σ/m), and the dimensionless degree of dissipation, 0 < fdiss < 1. We survey this parameter space, including constant and velocity-dependent cross-sections, and focus on structural and kinematic properties of dwarf galaxies with $M_{\rm halo} \sim 10^{10-11}{\, \rm M_\odot }$ and $M_{\ast } \sim 10^{5-8}{\, \rm M_\odot }$. Central density profiles (parametrized as ρ ∝ rα) of simulated dwarfs become cuspy when $(\sigma /m)_{\rm eff} \gtrsim 0.1\, {\rm cm^{2}\, g^{-1}}$ (and fdiss = 0.5 as fiducial). The power-law slopes asymptote to α ≈ −1.5 in low-mass dwarfs independent of cross-section, which arises from a dark matter ‘cooling flow’. Through comparisons with dark matter only simulations, we find the profile in this regime is insensitive to the inclusion of baryons. However, when $(\sigma /m)_{\rm eff} \ll 0.1\, {\rm cm^{2}\, g^{-1}}$, baryonic effects can produce cored density profiles comparable to non-dissipative cold dark matter (CDM) runs but at smaller radii. Simulated galaxies with more » $(\sigma /m) \gtrsim 10\, {\rm cm^{2}\, g^{-1}}$ and the fiducial fdiss develop significant coherent rotation of dark matter, accompanied by halo deformation, but this is unlike the well-defined thin ‘dark discs’ often attributed to baryon-like dSIDM. The density profiles in this high cross-section model exhibit lower normalizations given the onset of halo deformation. For our surveyed dSIDM parameters, halo masses and galaxy stellar masses do not show appreciable difference from CDM, but dark matter kinematics and halo concentrations/shapes can differ. « less
; ; ; ; ;
Award ID(s):
1910346 1752913 2107772 2108318
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
4421 to 4445
Sponsoring Org:
National Science Foundation
More Like this

    We perform cosmological zoom-in simulations of 19 relaxed cluster-mass haloes with the inclusion of adiabatic gas in the cold dark matter (CDM) and self-interacting dark matter (SIDM) models. These clusters are selected as dynamically relaxed clusters from a parent simulation with $M_{\rm 200} \simeq (1\!-\!3)\times 10^{15}{\, \rm M_\odot }$. Both the dark matter and the intracluster gas distributions in SIDM appear more spherical than their CDM counterparts. Mock X-ray images are generated based on the simulations and are compared to the real X-ray images of 84 relaxed clusters selected from the Chandra and ROSAT archives. We perform ellipse fitting for the isophotes of mock and real X-ray images and obtain the ellipticities at cluster-centric radii of $r\simeq 0.1\!-\!0.2R_{\rm 200}$. The X-ray isophotes in SIDM models with increasing cross-sections are rounder than their CDM counterparts, which manifests as a systematic shift in the distribution function of ellipticities. Unexpectedly, the X-ray morphology of the observed non-cool-core clusters agrees better with SIDM models with cross-section $(\sigma /m)= 0.5\!-\!1\, {\rm cm}^2\, {\rm g}^{-1}$ than CDM and SIDM with $(\sigma /m)=0.1\, {\rm cm}^2\, {\rm g}^{-1}$. Our statistical analysis indicates that the latter two models are disfavoured at the $68{{\ \rm per\ cent}}$ confidence level (as conservativemore »estimates). This conclusion is not altered by shifting the radial range of measurements or applying a temperature selection criterion. However, the primary uncertainty originates from the lack of baryonic physics in the adiabatic model, such as cooling, star formation and feedback effects, which still have the potential to reconcile CDM simulations with observations.

    « less
  2. ABSTRACT We analyse the cold dark matter density profiles of 54 galaxy haloes simulated with Feedback In Realistic Environments (FIRE)-2 galaxy formation physics, each resolved within $0.5{{\ \rm per\ cent}}$ of the halo virial radius. These haloes contain galaxies with masses that range from ultrafaint dwarfs ($M_\star \simeq 10^{4.5}\, \mathrm{M}_{\odot }$) to the largest spirals ($M_\star \simeq 10^{11}\, \mathrm{M}_{\odot }$) and have density profiles that are both cored and cuspy. We characterize our results using a new, analytic density profile that extends the standard two-parameter Einasto form to allow for a pronounced constant density core in the resolved innermost radius. With one additional core-radius parameter, rc, this three-parameter core-Einasto profile is able to characterize our feedback-impacted dark matter haloes more accurately than other three-parameter profiles proposed in the literature. To enable comparisons with observations, we provide fitting functions for rc and other profile parameters as a function of both M⋆ and M⋆/Mhalo. In agreement with past studies, we find that dark matter core formation is most efficient at the characteristic stellar-to-halo mass ratio M⋆/Mhalo ≃ 5 × 10−3, or $M_{\star } \sim 10^9 \, \mathrm{M}_{\odot }$, with cores that are roughly the size of the galaxy half-light radius, rc ≃ 1−5 kpc. Furthermore,more »we find no evidence for core formation at radii $\gtrsim 100\ \rm pc$ in galaxies with M⋆/Mhalo < 5 × 10−4 or $M_\star \lesssim 10^6 \, \mathrm{M}_{\odot }$. For Milky Way-size galaxies, baryonic contraction often makes haloes significantly more concentrated and dense at the stellar half-light radius than DMO runs. However, even at the Milky Way scale, FIRE-2 galaxy formation still produces small dark matter cores of ≃ 0.5−2 kpc in size. Recent evidence for a ∼2 kpc core in the Milky Way’s dark matter halo is consistent with this expectation.« less
  3. null (Ed.)
    ABSTRACT We present a suite of baryonic cosmological zoom-in simulations of self-interacting dark matter (SIDM) haloes within the ‘Feedback In Realistic Environment’ (FIRE) project. The three simulated haloes have virial masses of $\sim 10^{12}\, \text{M}_\odot$ at z = 0, and we study velocity-independent self-interaction cross sections of 1 and 10 ${\rm cm^2 \, g^{-1}}$. We study star formation rates and the shape of dark matter density profiles of the parent haloes in both cold dark matter (CDM) and SIDM models. Galaxies formed in the SIDM haloes have higher star formation rates at z ≤ 1, resulting in more massive galaxies compared to the CDM simulations. While both CDM and SIDM simulations show diverse shape of the dark matter density profiles, the SIDM haloes can reach higher and more steep central densities within few kpcs compared to the CDM haloes. We identify a correlation between the build-up of the stars within the half-mass radii of the galaxies and the growth in the central dark matter densities. The thermalization process in the SIDM haloes is enhanced in the presence of a dense stellar component. Hence, SIDM haloes with highly concentrated baryonic profiles are predicted to have higher central dark matter densities thanmore »the CDM haloes. Overall, the SIDM haloes are more responsive to the presence of a massive baryonic distribution than their CDM counterparts.« less

    We perform high-resolution simulations of an MW-like galaxy in a self-interacting cold dark matter model with elastic cross-section over mass of $1~\rm cm^2\, g^{-1}$ (SIDM) and compare to a model without self-interactions (CDM). We run our simulations with and without a time-dependent embedded potential to capture effects of the baryonic disc and bulge contributions. The CDM and SIDM simulations with the embedded baryonic potential exhibit remarkably similar host halo profiles, subhalo abundances, and radial distributions within the virial radius. The SIDM host halo is denser in the centre than the CDM host and has no discernible core, in sharp contrast to the case without the baryonic potential (core size ${\sim}7 \, \rm kpc$). The most massive subhaloes (with $V_{\mathrm{peak}}\gt 20 \, \rm km\, s^{-1}$) in our SIDM simulations, expected to host the classical satellite galaxies, have density profiles that are less dense than their CDM analogues at radii less than 500 pc but the deviation diminishes for less massive subhaloes. With the baryonic potential included in the CDM and SIDM simulations, the most massive subhaloes do not display the too-big-to-fail problem. However, the least dense among the massive subhaloes in both these simulations tend to have the smallest pericenter values,more »a trend that is not apparent among the bright MW satellite galaxies.

    « less
  5. ABSTRACT A possibility of DM being multicomponent has a strong implication on resolving decades-long known cosmological problems on small scale. In addition to elastic scattering, the model allows for inelastic interactions, which can be characterized by a ‘velocity kick’ parameter. The simplest 2cDM model with cross-section $0.01\lesssim \sigma /m\lt 1\, \textrm {cm}^{2}{ \rm g}^{-1}$ and the kick velocity $V_{\mathrm{ k}}\simeq 100\, \rm {km\, s}^{-1}$ have been shown to robustly resolve the missing satellites, core-cusp, and too-big-to-fail problems in N-body cosmological simulations tested on Milky Way (MW)-like haloes of a virial mass ${\sim}5 \times 10^{11}\, {\rm M_{\odot }}$ (Papers I & II). With the aim of further constraining the parameter space available for the 2cDM model, we extend our analysis to dwarf and galaxy cluster haloes with their virial mass of ∼107−108 and ${\sim}10^{13} - 10^{14}\, {\rm M_{\odot }}$, respectively. We find that σ0/m ≳ 0.1 cm2g−1 is preferentially disfavoured for both dwarfs and galaxy cluster haloes in comparison with observations, while σ0/m = 0.001 cm2g−1 causes little perceptible difference from that of the CDM counterpart for most of the cross-section’s velocity dependence studied in this work. Our main result is that within the reasonable set of parameters, the 2cDM model can successfully explain themore »observational trends seen in dwarf galaxy and galaxy cluster haloes, and the model leaves us an open window for other possible alternative DM models.« less