skip to main content

Title: Cosmic Rays or Turbulence can Suppress Cooling Flows (Where Thermal Heating or Momentum Injection Fail)
Abstract The quenching “maintenance” and “cooling flow” problems are important from the Milky Way through massive cluster elliptical galaxies. Previous work has shown that some source of energy beyond that from stars and pure magnetohydrodynamic processes is required, perhaps from AGN, but even the qualitative form of this energetic input remains uncertain. Different scenarios include thermal “heating,” direct wind or momentum injection, cosmic ray heating or pressure support, or turbulent “stirring” of the intra-cluster medium (ICM). We investigate these in 1012 − 1014 M⊙ halos using high-resolution non-cosmological simulations with the FIRE-2 (Feedback In Realistic Environments) stellar feedback model, including simplified toy energy-injection models, where we arbitrarily vary the strength, injection scale, and physical form of the energy. We explore which scenarios can quench without violating observational constraints on energetics or ICM gas. We show that turbulent stirring in the central ∼100 kpc, or cosmic-ray injection, can both maintain a stable low-SFR halo for >Gyr timescales with modest energy input, by providing a non-thermal pressure which stably lowers the core density and cooling rates. In both cases, associated thermal-heating processes are negligible. Turbulent stirring preserves cool-core features while mixing condensed core gas into the hotter halo and is by far the most more » energy efficient model. Pure thermal heating or nuclear isotropic momentum injection require vastly larger energy, are less efficient in lower-mass halos, easily over-heat cores, and require fine-tuning to avoid driving unphysical temperature gradients or gas expulsion from the halo center. « less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1715216 1715101 1715847
Publication Date:
NSF-PAR ID:
10184326
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Without additional heating, radiative cooling of the halo gas of massive galaxies (Milky Way-mass and above) produces cold gas or stars exceeding that observed. Heating from active galactic nucleus (AGN) jets is likely required, but the jet properties remain unclear. This is particularly challenging for galaxy simulations, where the resolution is orders-of-magnitude insufficient to resolve jet formation and evolution. On such scales, the uncertain parameters include the jet energy form [kinetic, thermal, cosmic ray (CR)]; energy, momentum, and mass flux; magnetic fields; opening angle; precession; and duty cycle. We investigate these parameters in a $10^{14}\, {\rm M}_{\odot }$ halo using high-resolution non-cosmological magnetohydrodynamic simulations with the FIRE-2 (Feedback In Realistic Environments) stellar feedback model, conduction, and viscosity. We explore which scenarios qualitatively meet observational constraints on the halo gas and show that CR-dominated jets most efficiently quench the galaxy by providing CR pressure support and modifying the thermal instability. Mildly relativistic (∼MeV or ∼1010K) thermal plasma jets work but require ∼10 times larger energy input. For fixed energy flux, jets with higher specific energy (longer cooling times) quench more effectively. For this halo mass, kinetic jets are inefficient at quenching unless they have wide opening or precession angles. Magnetic fieldsmore »also matter less except when the magnetic energy flux reaches ≳ 1044 erg s−1 in a kinetic jet model, which significantly widens the jet cocoon. The criteria for a successful jet model are an optimal energy flux and a sufficiently wide jet cocoon with a long enough cooling time at the cooling radius.« less
  2. ABSTRACT Active galactic nuclei (AGNs) feedback is responsible for maintaining plasma in global thermal balance in extended haloes of elliptical galaxies and galaxy clusters. Local thermal instability in the hot gas leads to the formation of precipitating cold gas clouds that feed the central supermassive black holes, thus heating the hot gas and maintaining global thermal equilibrium. We perform 3D magnetohydrodynamical (MHD) simulations of self-regulated AGNs feedback in a Perseus-like galaxy cluster with the aim of understanding the impact of the feedback physics on the turbulence properties of the hot and cold phases of the intracluster medium (ICM). We find that, in general, the cold phase velocity structure function (VSF) is steeper than the prediction from Kolmogorov’s theory. We attribute the physical origin of the steeper slope of the cold phase VSF to the driving of turbulent motions primarily by the gravitational acceleration acting on the ballistic clouds. We demonstrate that, in the pure hydrodynamical case, the precipitating cold filaments may be the dominant agent driving turbulence in the hot ICM. The arguments in favour of this hypothesis are that: (i) the cold phase mass dominates over hot gas mass in the inner cool core; (ii) hot and cold gasmore »velocities are spatially correlated; (iii) both the cold and hot phase velocity distributions are radially biased. We show that, in the MHD case, the turbulence in the ambient hot medium (excluding the jet cone regions) can also be driven by the AGN jets. The driving is then facilitated by enhanced coupling due to magnetic fields of the ambient gas and the AGN jets. In the MHD case, turbulence may thus be driven by a combination of AGN jet stirring and filament motions. We conclude that future observations, including those from high spatial and spectral resolution X-ray missions, may help to constrain self-regulated AGN feedback by quantifying the multitemperature VSF in the ICM.« less
  3. Abstract The classical definition of the virial temperature of a galaxy halo excludes a fundamental contribution to the energy partition of the halo: the kinetic energy of nonthermal gas motions. Using simulations of low-redshift, ∼ L * galaxies from the Figuring Out Gas & Galaxies In Enzo (FOGGIE) project that are optimized to resolve low-density gas, we show that the kinetic energy of nonthermal motions is roughly equal to the energy of thermal motions. The simulated FOGGIE halos have ∼2× lower bulk temperatures than expected from a classical virial equilibrium, owing to significant nonthermal kinetic energy that is formally excluded from the definition of T vir . We explicitly derive a modified virial temperature including nonthermal gas motions that provides a more accurate description of gas temperatures for simulated halos in virial equilibrium. Strong bursts of stellar feedback drive the simulated FOGGIE halos out of virial equilibrium, but the halo gas cannot be accurately described by the standard virial temperature even when in virial equilibrium. Compared to the standard virial temperature, the cooler modified virial temperature implies other effects on halo gas: (i) the thermal gas pressure is lower, (ii) radiative cooling is more efficient, (iii) O vi absorbing gasmore »that traces the virial temperature may be prevalent in halos of a higher mass than expected, (iv) gas mass estimates from X-ray surface brightness profiles may be incorrect, and (v) turbulent motions make an important contribution to the energy balance of a galaxy halo.« less
  4. Context. The excitation of the filamentary gas structures surrounding giant elliptical galaxies at the center of cool-core clusters, also known as brightest cluster galaxies (BCGs), is key to our understanding of active galactic nucleus (AGN) feedback, and of the impact of environmental and local effects on star formation. Aims. We investigate the contribution of thermal radiation from the cooling flow surrounding BCGs to the excitation of the filaments. We explore the effects of small levels of extra heating (turbulence), and of metallicity, on the optical and infrared lines. Methods. Using the C LOUDY code, we modeled the photoionization and photodissociation of a slab of gas of optical depth A V  ≤ 30 mag at constant pressure in order to calculate self-consistently all of the gas phases, from ionized gas to molecular gas. The ionizing source is the extreme ultraviolet (EUV) and soft X-ray radiation emitted by the cooling gas. We tested these models comparing their predictions to the rich multi-wavelength observations from optical to submillimeter, now achieved in cool core clusters. Results. Such models of self-irradiated clouds, when reaching sufficiently large A V , lead to a cloud structure with ionized, atomic, and molecular gas phases. These models reproduce most ofmore »the multi-wavelength spectra observed in the nebulae surrounding the BCGs, not only the low-ionization nuclear emission region like optical diagnostics, [O  III ] λ 5007 Å/H β , [N  II ] λ 6583 Å/H α , and ([S  II ] λ 6716 Å+[S  II ] λ 6731 Å)/H α , but also the infrared emission lines from the atomic gas. [O  I ] λ 6300 Å/H α , instead, is overestimated across the full parameter space, except for very low A V . The modeled ro-vibrational H 2 lines also match observations, which indicates that near- and mid-infrared H 2 lines are mostly excited by collisions between H 2 molecules and secondary electrons produced naturally inside the cloud by the interaction between the X-rays and the cold gas in the filament. However, there is still some tension between ionized and molecular line tracers (i.e., CO), which requires optimization of the cloud structure and the density of the molecular zone. The limited range of parameters over which predictions match observations allows us to constrain, in spite of degeneracies in the parameter space, the intensity of X-ray radiation bathing filaments, as well as some of their physical properties like A V or the level of turbulent heating rate. Conclusions. The reprocessing of the EUV and X-ray radiation from the plasma cooling is an important powering source of line emission from filaments surrounding BCGs. C LOUDY self-irradiated X-ray excitation models coupled with a small level of turbulent heating manage to simultaneously reproduce a large number of optical-to-infrared line ratios when all the gas phases (from ionized to molecular) are modeled self-consistently. Releasing some of the simplifications of our model, like the constant pressure, or adding the radiation fields from the AGN and stars, as well as a combination of matter- and radiation-bounded cloud distribution, should improve the predictions of line emission from the different gas phases.« less
  5. Abstract

    The thermal Sunyaev–Zel’dovich (tSZ) effect is a powerful tool with the potential for constraining directly the properties of the hot gas that dominates dark matter halos because it measures pressure and thus thermal energy density. Studying this hot component of the circumgalactic medium (CGM) is important because it is strongly impacted by star formation and active galactic nucleus (AGN) activity in galaxies, participating in the feedback loop that regulates star and black hole mass growth in galaxies. We study the tSZ effect across a wide halo-mass range using three cosmological hydrodynamical simulations: Illustris-TNG, EAGLE, and FIRE-2. Specifically, we present the scaling relation between the tSZ signal and halo mass and the (mass-weighted) radial profiles of gas density, temperature, and pressure for all three simulations. The analysis includes comparisons to Planck tSZ observations and to the thermal pressure profile inferred from the Atacama Cosmology Telescope (ACT) measurements. We compare these tSZ data to simulations to interpret the measurements in terms of feedback and accretion processes in the CGM. We also identify as-yet unobserved potential signatures of these processes that may be visible in future measurements, which will have the capability of measuring tSZ signals to even lower masses. We alsomore »perform internal comparisons between runs with different physical assumptions. We conclude (1) there is strong evidence for the impact of feedback atR500, but that this impact decreases by 5R500, and (2) the thermodynamic profiles of the CGM are highly dependent on the implemented model, such as cosmic-ray or AGN feedback prescriptions.

    « less