skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Collectively Intelligent Teams: Integrating Team Cognition, Collective Intelligence, and AI for Future Teaming
In this paper we propose a new model for teamwork that integrates team cognition, collective intelligence, and artificial intelligence. We do this by first characterizing what sets team cognition and collectively intelligence apart, and then reviewing the literature on “superforecasting” and the ability for effectively coordinated teams to outperform predictions by large groups. Lastly, we delve into the ways in which teamwork can be enhanced by artificial intelligence through our model, finally highlighting the many areas of research worth exploring through interdisciplinary efforts.  more » « less
Award ID(s):
1829008
PAR ID:
10184343
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
63
Issue:
1
ISSN:
2169-5067
Page Range / eLocation ID:
1466 to 1470
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Researchers of team behavior have long been interested in the essential components of effective teamwork. Much existing research focuses on examining correlations between team member traits, team processes, and team outcomes, such as collective intelligence or team performance. However, these approaches are insufficient for providing insight into the dynamic, causal mechanisms through which the components of teamwork interact with one another and impact the emergence of team outcomes. Advances in the field of animal behavior have enabled a precise understanding of the behavioral mechanisms that enable groups to perform feats that surpass the capabilities of the individuals that comprise them. In this manuscript, we highlight how studies of animal swarm intelligence can inform research on collective intelligence in human teams. By improving the ability to obtain precise, time-varying measurements of team behaviors and outcomes and building upon approaches used in studies of swarm intelligence to analyze and model individual and group-level behaviors, researchers can gain insight into the mechanisms underlying the emergence of collective intelligence. Such understanding could inspire targeted interventions to improve team effectiveness and support the development of a comparative framework of group-level intelligence in animal and human groups. 
    more » « less
  2. null (Ed.)
    Advances in artificial intelligence are constantly increasing its validity as a team member enabling it to effectively work alongside humans and other artificial teammates. Unfortunately, the digital nature of artificial teammates and their restrictive communication and coordination requirements complicate the interaction patterns that exist. In light of this challenge, we create a theoretical framework that details the possible interactions in human-agent teams, emphasizing interactions through groupware, which is based on literature regarding groupware and human-agent teamwork. As artificial intelligence changes and advances, the interaction in human agent teams will also advance, meaning interaction frameworks and groupware must adapt to these changes. We provide examples and a discussion of the frameworks ability to adapt based on advancements in relevant research areas like natural language processing and artificial general intelligence. The results are a framework that detail human-agent interaction throughout the coming years, which can be used to guide groupware development. 
    more » « less
  3. Purpose:Complex scientific problems, including those facing the discipline of communication sciences and disorders (CSD), require interdisciplinary teams of scientists who bring diverse perspectives, knowledge, and skills. According to a recent survey, team science is not yet widely practiced by CSD researchers. This viewpoint describes a current interdisciplinary team science project that addresses a challenging problem for CSD practitioners: meeting the needs of young children with speech and language disabilities for screening and intervention using artificial intelligence–augmented technologies. Method:The article draws from the research literature on the science of team science to describe common challenges faced by interdisciplinary teams and recommended practices to resolve the challenges. Throughout, we provide examples from the National Artificial Intelligence Institute for Exceptional Education to illustrate team science challenges and how they can be addressed. Conclusions:Readers are encouraged to embrace interdisciplinary teamwork to advance the science of CSD. We recommend seeking out training in team science, advocating for professional development opportunities, and institutional support for team science to maximize its benefits for the field. 
    more » « less
  4. Computational metacognition represents a cognitive systems perspective on high-order reasoning in integrated artificial systems that seeks to leverage ideas from human metacognition and from metareasoning approaches in artificial intelligence. The key characteristic is to declaratively represent and then monitor traces of cognitive activity in an intelligent system in order to manage the performance of cognition itself. Improvements in cognition then lead to improvements in behavior and thus performance. We illustrate these concepts with an agent implementation in a cognitive architecture called MIDCA and show the value of metacognition in problem-solving. The results illustrate how computational metacognition improves performance by changing cognition through meta-level goal operations and learning. 
    more » « less
  5. Effective teamwork translates to fewer preventable errors and higher task performance in collaborative tasks. However, in time-critical tasks, successful teamwork becomes highly challenging to attain. In such settings, often, team members have partial observability of their surroundings, incur high cost of communication, and have trouble estimating the state and intent of their teammates. To assist a team in improving teamwork at task time, my doctoral research proposes an automated task-time team intervention system. Grounded in the notion of shared mental models, the system first detects whether the team is on the same page or not. It then generates effective interventions to improve teamwork. Additionally, by leveraging past demonstrations to learn a model of team behavior, this system minimizes the need for domain experts to specify teamwork models and rules. 
    more » « less