In this paper we propose a new model for teamwork that integrates team cognition, collective intelligence, and artificial intelligence. We do this by first characterizing what sets team cognition and collectively intelligence apart, and then reviewing the literature on “superforecasting” and the ability for effectively coordinated teams to outperform predictions by large groups. Lastly, we delve into the ways in which teamwork can be enhanced by artificial intelligence through our model, finally highlighting the many areas of research worth exploring through interdisciplinary efforts.
more »
« less
This content will become publicly available on April 10, 2026
Supporting Speech-Language Pathologists in Schools With Interdisciplinary Team Science: A Viewpoint From the National Artificial Intelligence Institute for Exceptional Education
Purpose:Complex scientific problems, including those facing the discipline of communication sciences and disorders (CSD), require interdisciplinary teams of scientists who bring diverse perspectives, knowledge, and skills. According to a recent survey, team science is not yet widely practiced by CSD researchers. This viewpoint describes a current interdisciplinary team science project that addresses a challenging problem for CSD practitioners: meeting the needs of young children with speech and language disabilities for screening and intervention using artificial intelligence–augmented technologies. Method:The article draws from the research literature on the science of team science to describe common challenges faced by interdisciplinary teams and recommended practices to resolve the challenges. Throughout, we provide examples from the National Artificial Intelligence Institute for Exceptional Education to illustrate team science challenges and how they can be addressed. Conclusions:Readers are encouraged to embrace interdisciplinary teamwork to advance the science of CSD. We recommend seeking out training in team science, advocating for professional development opportunities, and institutional support for team science to maximize its benefits for the field.
more »
« less
- Award ID(s):
- 2229873
- PAR ID:
- 10653143
- Publisher / Repository:
- ASHA Journal
- Date Published:
- Journal Name:
- Language, Speech, and Hearing Services in Schools
- Volume:
- 56
- Issue:
- 2
- ISSN:
- 0161-1461
- Page Range / eLocation ID:
- 431 to 438
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
BackgroundChatGPT showcases exceptional conversational capabilities and extensive cross-disciplinary knowledge. In addition, it can perform multiple roles in a single chat session. This unique multirole-playing feature positions ChatGPT as a promising tool for exploring interdisciplinary subjects. ObjectiveThe aim of this study was to evaluate ChatGPT’s competency in addressing interdisciplinary inquiries based on a case study exploring the opportunities and challenges of chatbot uses in sports rehabilitation. MethodsWe developed a model termed PanelGPT to assess ChatGPT’s competency in addressing interdisciplinary topics through simulated panel discussions. Taking chatbot uses in sports rehabilitation as an example of an interdisciplinary topic, we prompted ChatGPT through PanelGPT to role-play a physiotherapist, psychologist, nutritionist, artificial intelligence expert, and athlete in a simulated panel discussion. During the simulation, we posed questions to the panel while ChatGPT acted as both the panelists for responses and the moderator for steering the discussion. We performed the simulation using ChatGPT-4 and evaluated the responses by referring to the literature and our human expertise. ResultsBy tackling questions related to chatbot uses in sports rehabilitation with respect to patient education, physiotherapy, physiology, nutrition, and ethical considerations, responses from the ChatGPT-simulated panel discussion reasonably pointed to various benefits such as 24/7 support, personalized advice, automated tracking, and reminders. ChatGPT also correctly emphasized the importance of patient education, and identified challenges such as limited interaction modes, inaccuracies in emotion-related advice, assurance of data privacy and security, transparency in data handling, and fairness in model training. It also stressed that chatbots are to assist as a copilot, not to replace human health care professionals in the rehabilitation process. ConclusionsChatGPT exhibits strong competency in addressing interdisciplinary inquiry by simulating multiple experts from complementary backgrounds, with significant implications in assisting medical education.more » « less
-
Abstract BackgroundEffectively facilitating teamwork experiences, particularly in the context of large-size courses, is difficult to implement. This study seeks to address the challenges of implementing effective teamwork experiences in large courses. This study integrated teamwork pedagogy to facilitate a semester-long project in the context of a large-size class comprising 118 students organized into 26 teams. The data for this study were collected from two online teamwork sessions when teams collaborated and self-recorded during the in-class time. The video recordings were qualitatively analyzed to identify patterns in team dynamics processes through visualizations. The study aims to provide insights into the different ways team members engaged in team dynamics processes during different phases of the semester. ResultsFindings suggest that members of teams were mostly active and passive during meetings and less constructive and interactive in their engagement. Team members mainly engaged in communication, team orientation, and feedback behaviors. Over time, team members' interactions with one another remained about the same, with feedback behaviors tending to diminish and coordination behaviors staying about the same or slightly increasing over time. ConclusionThe implications of this study extend to both practice and theory. Practically, combining cooperative learning and scrum practices enabled a blend of collaborative and cooperative work, which suggests providing teams with tools and structures to coordinate teamwork processes and promote interaction among team members. From a theoretical perspective, this study contributes to the understanding of temporal aspects of teamwork dynamics by examining how team interactions evolve during working sessions at different points in time. Overall, this research provides valuable insights for educators, practitioners, and researchers aiming to enhance teamwork experiences in large courses, particularly in software development disciplines.more » « less
-
Mueller, Florian Floyd; Kyburz, Penny; Williamson, Julie R; Sas, Corina; Wilson, Max L; Dugas, Phoebe Toups; Shklovski, Irina (Ed.)Advances in artificial intelligence (AI) have enabled unprecedented capabilities, yet innovation teams struggle when envisioning AI concepts. Data science teams think of innovations users do not want, while domain experts think of innovations that cannot be built. A lack of effective ideation seems to be a breakdown point. How might multidisciplinary teams identify buildable and desirable use cases? This paper presents a first hand account of ideating AI concepts to improve critical care medicine. As a team of data scientists, clinicians, and HCI researchers, we conducted a series of design workshops to explore more effective approaches to AI concept ideation and problem formulation. We detail our process, the challenges we encountered, and practices and artifacts that proved effective. We discuss the research implications for improved collaboration and stakeholder engagement, and discuss the role HCI might play in reducing the high failure rate experienced in AI innovation.more » « less
-
Abstract BackgroundThis study posits that scaffolded team-based computational modeling and simulation projects can support model-based learning that can result in evidence of representational competence and regulatory skills. The study involved 116 students from a second-year thermodynamics undergraduate course organized into 24 teams, who worked on three two-week-long team-based computational modeling and simulation projects and reflected upon their experience. ResultsResults characterized different levels of engagement with computational model-based learning in the form of problem formulation and model planning, implementation and use of the computational model, evaluation, and interpretation of the outputs of the model, as well as reflection on the process. Results report on students’ levels of representational competence as related to the computational model, meaning-making of the underlying code of the computational model, graphical representations generated by the model, and explanations and interpretations of the output representations. Results also described regulatory skills as challenges and strategies related to programming skills, challenges and strategies related to meaning-making skills for understanding and connecting the science to the code and the results, and challenges and strategies related to process management mainly focused on project management skills. ConclusionCharacterizing dimensions of computational model-based reasoning provides insights that showcase students’ learning, benefits, and challenges when engaging in team-based computational modeling and simulation projects. This study also contributes to evidence-based scaffolding strategies that can support undergraduate students' engagement in the context of computational modeling and simulation.more » « less
An official website of the United States government
