skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Wisdom of the Market: Using Human Factors to Design Prediction Markets for Collective Intelligence
There is an ever-growing literature on the power of prediction markets to harness “the wisdom of the crowd” from large groups of people. However, traditional prediction markets are not designed in a human-centered way, often restricting their own potential. This creates the opportunity to implement a cognitive science perspective on how to enhance the collective intelligence of the participants. Thus, we propose a new model for prediction markets that integrates human factors, cognitive science, game theory and machine learning to maximize collective intelligence. We do this by first identifying the connections between prediction markets and collective intelligence, to then use human factors techniques to analyze our design, culminating in the practical ways with which our design enables artificial intelligence to complement human intelligence.  more » « less
Award ID(s):
1829008
PAR ID:
10184344
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
63
Issue:
1
ISSN:
2169-5067
Page Range / eLocation ID:
1471 to 1475
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Artificial intelligence in the workplace is becoming increasingly common. These tools are sometimes used to aid users in performing their task, for example, when an artificial intelligence tool assists a radiologist in their search for abnormalities in radiographic images. The use of artificial intelligence brings a wealth of benefits, such as increasing the efficiency and efficacy of performance. However, little research has been conducted to determine how the use of artificial intelligence assistants might affect the user’s cognitive skills. In this theoretical perspective, we discuss how artificial intelligence assistants might accelerate skill decay among experts and hinder skill acquisition among learners. Further, we discuss how AI assistants might also prevent experts and learners from recognizing these deleterious effects. We then discuss the types of questions: use-inspired basic cognitive researchers, applied researchers, and computer science researchers should seek to answer. We conclude that multidisciplinary research from use-inspired basic cognitive research, domain-specific applied research, and technical research (e.g., human factors research, computer science research) is needed to (a) understand these potential consequences, (b) design artificial intelligence systems to mitigate these impacts, and (c) develop training and use protocols to prevent negative impacts on users’ cognitive skills. Only by answering these questions from multidisciplinary perspectives can we harness the benefits of artificial intelligence in the workplace while preventing negative impacts on users’ cognitive skills. 
    more » « less
  2. Collective decision-making constitutes a core function of social systems and is, therefore, a central tenet of collective intelligence research. From fish schools to human crowds, we start by interrogating ourselves about the very definition of collective decision-making and the scope of the scientific research that falls under it. We then summarize its history through the lenses of social choice theory and swarm intelligence and their accelerating collaboration over the past 20 or so years. Finally, we offer our perspective on the future of collective decision-making research in 3 mutually inclusive directions. We argue (1) that the possibility to collect data of a new nature, including fine-grain tracking information, virtual reality, and brain imaging inputs, will enable a direct link between plastic individual cognitive processes and the ontogeny of collective behaviors; (2) that current theoretical frameworks are not well suited to describe the long-term consequences of individual plasticity on collective decision-making processes and that, therefore, new formalisms are necessary; and finally (3) that applying the results of collective decision-making research to real-world situations will require the development of practical tools, the implementation of monitoring processes that respect civil liberties, and, possibly, government regulations of social interventions by public and private actors. 
    more » « less
  3. Abstract Resting-state functional connectivity (RSFC) has been widely adopted for individualized trait prediction. However, multiple confounding factors may impact the predicted brain-behavior relationships. In this study, we investigated the impact of 4 confounding factors including time series length, functional connectivity (FC) type, brain parcellation choice, and variance of the predicted target. The data from Human Connectome Project including 1,206 healthy subjects were employed, with 3 cognitive traits including fluid intelligence, working memory, and picture vocabulary ability as the prediction targets. We compared the prediction performance under different settings of these 4 factors using partial least square regression. Results demonstrated appropriate time series length (300 time points) and brain parcellation (independent component analysis, ICA100/200) can achieve better prediction performance without too much time consumption. FC calculated by Pearson, Spearman, and Partial correlation achieves higher accuracy and lower time cost than mutual information and coherence. Cognitive traits with larger variance among subjects can be better predicted due to the well elaboration of individual variability. In addition, the beneficial effects of increasing scan duration to prediction partially arise from the improved test–retest reliability of RSFC. Taken together, the study highlights the importance of determining these factors in RSFC-based prediction, which can facilitate standardization of RSFC-based prediction pipelines going forward. 
    more » « less
  4. Studying social-ecological systems, in which agents interact with each other and their environment are important both for sustainability applications and for understanding how human cognition functions in context. In such systems, the environment shapes the agents' experience and actions, and in turn collective action of agents changes social and physical aspects of the environment. Here we review current investigation approaches, which rely on a lean design, with discrete actions and outcomes and little scope for varying environmental parameters and cognitive demands. We then introduce a multiagent reinforcement learning (MARL) approach, which builds on modern artificial intelligence techniques, and provides new avenues to model complex social worlds, while preserving more of their characteristics, and allowing them to capture a variety of social phenomena. These techniques can be fed back to the laboratory where they make it easier to design experiments in complex social situations without compromising their tractability for computational modeling. We showcase the potential MARL by discussing several recent studies that have used it, detailing the way environmental settings and cognitive constraints can lead to the emergence of complex cooperation strategies. This novel approach can help researchers bring together insights from human cognition, sustainability, and AI, to tackle real world problems of social-ecological systems. 
    more » « less
  5. This paper studies the design of an AI tool that supports gig knowledge workers, rather than displacing them, focusing on text-based generative AI technologies. Through a formative study involving interviews and design activities, gig workers shared their views on text-based generative AI and envisioned applications where AI acts as managers, secretaries, and communication aids. Leveraging these insights, we created a generative-AI enhanced tool, Office-Mind AI, to aid gig workers. Our research advances the conversation around algorithmic labor by designing a worker-focused intelligent tool. This tool harness collective intelligence among workers and AI, fostering productive human-AI partnerships. We conclude by discussing the future prospects of collective intelligence tools designed for worker-AI collaborations. 
    more » « less