skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Infrared interferometry to spatially and spectrally resolve jets in X-ray binaries
ABSTRACT Infrared interferometry is a new frontier for precision ground-based observing, with new instrumentation achieving milliarcsecond (mas) spatial resolutions for faint sources, along with astrometry on the order of 10 microarcseconds (μas). This technique has already led to breakthroughs in the observations of the supermassive black hole at the Galactic centre and its orbiting stars, active galactic nucleus, and exo-planets, and can be employed for studying X-ray binaries (XRBs), microquasars in particular. Beyond constraining the orbital parameters of the system using the centroid wobble and spatially resolving jet discrete ejections on mas scales, we also propose a novel method to discern between the various components contributing to the infrared bands: accretion disc, jets, and companion star. We demonstrate that the GRAVITY instrument on the Very Large Telescope Interferometer should be able to detect a centroid shift in a number of sources, opening a new avenue of exploration for the myriad of transients expected to be discovered in the coming decade of radio all-sky surveys. We also present the first proof-of-concept GRAVITY observation of a low-mass XRB transient, MAXI J1820+070, to search for extended jets on mas scales. We place the tightest constraints yet via direct imaging on the size of the infrared emitting region of the compact jet in a hard state XRB.  more » « less
Award ID(s):
1909711
PAR ID:
10184512
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
495
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
525 to 535
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present new near-infrared VLTI/GRAVITY interferometric spectra that spatially resolve the broad Br γ emission line in the nucleus of the active galaxy IRAS 09149−6206. We use these data to measure the size of the broad line region (BLR) and estimate the mass of the central black hole. Using an improved phase calibration method that reduces the differential phase uncertainty to 0.05° per baseline across the spectrum, we detect a differential phase signal that reaches a maximum of ∼0.5° between the line and continuum. This represents an offset of ∼120  μ as (0.14 pc) between the BLR and the centroid of the hot dust distribution traced by the 2.3 μ m continuum. The offset is well within the dust sublimation region, which matches the measured ∼0.6 mas (0.7 pc) diameter of the continuum. A clear velocity gradient, almost perpendicular to the offset, is traced by the reconstructed photocentres of the spectral channels of the Br γ line. We infer the radius of the BLR to be ∼65  μ as (0.075 pc), which is consistent with the radius–luminosity relation of nearby active galactic nuclei derived based on the time lag of the H β line from reverberation mapping campaigns. Our dynamical modelling indicates the black hole mass is ∼1 × 10 8   M ⊙ , which is a little below, but consistent with, the standard M BH – σ * relation. 
    more » « less
  2. null (Ed.)
    Abstract Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii ( r g  ≡  G M / c 2 ) scales in nearby sources 1 . Centaurus A is the closest radio-loud source to Earth 2 . It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations 3 , we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500  r g scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow 4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses 5,6 . 
    more » « less
  3. Abstract Compact steep spectrum (CSS) radio sources are active galactic nuclei (AGN) that have radio jets propagating only on galactic scales, defined as having projected linear size (LS) of up to 20 kpc. CSS sources are generally hosted by massive early-type galaxies with little ongoing star formation; however, a small fraction are known to have enhanced star formation. Using archival data from the Faint Images of the Radio Sky at Twenty cm survey, the Very Large Array Sky Survey, and the Sloan Digital Sky Survey, we identify a volume-limited sample of 166 CSS sources at z < 0.2 with L 1.4 GHz > 10 24 W Hz −1 . Comparing the star formation rates and linear sizes of these CSS sources, we find that the ≈14% of CSS sources with specific star formation rates above 0.01 Gyr −1 all have LS < 10 kpc. We discuss the possible mechanisms driving this result, concluding that it is likely the excess star formation in these sources occurred in multiple bursts and ceased prior to the AGN jet being triggered. 
    more » « less
  4. Context. Because of its proximity and the large size of its black hole, M 87 is one of the best targets for studying the launching mechanism of active galactic nucleus jets. Currently, magnetic fields are considered to be an essential factor in the launching and accelerating of the jet. However, current observational estimates of the magnetic field strength of the M 87 jet are limited to the innermost part of the jet (≲100 r s ) or to HST-1 (∼10 5   r s ). No attempt has yet been made to measure the magnetic field strength in between. Aims. We aim to infer the magnetic field strength of the M 87 jet out to a distance of several thousand r s by tracking the distance-dependent changes in the synchrotron spectrum of the jet from high-resolution very long baseline interferometry observations. Methods. In order to obtain high-quality spectral index maps, quasi-simultaneous observations at 22 and 43 GHz were conducted using the KVN and VERA Array (KaVA) and the Very Long Baseline Array (VLBA). We compared the spectral index distributions obtained from the observations with a model and placed limits on the magnetic field strengths as a function of distance. Results. The overall spectral morphology is broadly consistent over the course of these observations. The observed synchrotron spectrum rapidly steepens from α 22 − 43 GHz  ∼ −0.7 at ∼2 mas to α 22 − 43 GHz  ∼ −2.5 at ∼6 mas. In the KaVA observations, the spectral index remains unchanged until ∼10 mas, but this trend is unclear in the VLBA observations. A spectral index model in which nonthermal electron injections inside the jet decrease with distance can adequately reproduce the observed trend. This suggests the magnetic field strength of the jet at a distance of 2−10 mas (∼900 r s  − ∼4500 r s in the deprojected distance) has a range of B  = (0.3−1.0 G)( z /2mas) −0.73 . Extrapolating to the Event Horizon Telescope scale yields consistent results, suggesting that the majority of the magnetic flux of the jet near the black hole is preserved out to ∼4500 r s without significant dissipation. 
    more » « less
  5. ABSTRACT Supermassive black hole binaries (SMBHBs) are natural by-products of galaxy mergers and are expected to be powerful multimessenger sources. They can be powered by the accretion of matter and then radiate across the electromagnetic spectrum, much like normal active galactic nuclei (AGNs). Current electromagnetic observatories have a good chance of detecting and identifying these systems in the near future. However, precise observational indicators are needed to distinguish individual AGNs from SMBHBs. In this paper, we propose a novel electromagnetic signature from SMBHBs: non-thermal emission produced by the interaction between the jets ejected by the black holes. We study close SMBHBs, which accrete matter from a circumbinary disc and the mini-discs formed around each hole. Each black hole ejects a magnetically dominated jet in the direction of its spin through the Blandford–Znajek mechanism. We argue that in such a situation, the interaction between the jets can trigger strong magnetic reconnection events, where particles are accelerated and emit non-thermal radiation. Depending on whether the jets are aligned or misaligned, this radiation can have different periodicities. We model the evolution of the particles accelerated during the dual jet interaction and calculate their radiative output, obtaining spectra and providing estimates for the variability time-scales. We finally discuss how this emission compares with that of normal AGNs. 
    more » « less