skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: The spatially resolved broad line region of IRAS 09149−6206
We present new near-infrared VLTI/GRAVITY interferometric spectra that spatially resolve the broad Br γ emission line in the nucleus of the active galaxy IRAS 09149−6206. We use these data to measure the size of the broad line region (BLR) and estimate the mass of the central black hole. Using an improved phase calibration method that reduces the differential phase uncertainty to 0.05° per baseline across the spectrum, we detect a differential phase signal that reaches a maximum of ∼0.5° between the line and continuum. This represents an offset of ∼120  μ as (0.14 pc) between the BLR and the centroid of the hot dust distribution traced by the 2.3 μ m continuum. The offset is well within the dust sublimation region, which matches the measured ∼0.6 mas (0.7 pc) diameter of the continuum. A clear velocity gradient, almost perpendicular to the offset, is traced by the reconstructed photocentres of the spectral channels of the Br γ line. We infer the radius of the BLR to be ∼65  μ as (0.075 pc), which is consistent with the radius–luminosity relation of nearby active galactic nuclei derived based on the time lag of the H β line from reverberation mapping campaigns. Our dynamical modelling indicates the black hole mass is ∼1 × 10 8   M ⊙ , which is a little below, but consistent with, the standard M BH – σ * relation.  more » « less
Award ID(s):
1909711
PAR ID:
10267931
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
643
ISSN:
0004-6361
Page Range / eLocation ID:
A154
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Using VLTI/GRAVITY and SINFONI data, we investigate the subparsec gas and dust structure around the nearby type 1 active galactic nucleus (AGN) hosted by NGC 3783. The K -band coverage of GRAVITY uniquely allows simultaneous analysis of the size and kinematics of the broad line region (BLR), the size and structure of the near-infrared(near-IR)-continuum-emitting hot dust, and the size of the coronal line region (CLR). We find the BLR, probed through broad Br γ emission, to be well described by a rotating, thick disc with a radial distribution of clouds peaking in the inner region. In our BLR model, the physical mean radius of 16 light-days is nearly twice the ten-day time-lag that would be measured, which closely matches the ten-day time-lag that has been measured by reverberation mapping. We measure a hot dust full-width at half-maximum (FWHM) size of 0.74 mas (0.14 pc) and further reconstruct an image of the hot dust, which reveals a faint (5% of the total flux) offset cloud that we interpret as an accreting or outflowing cloud heated by the central AGN. Finally, we directly measure the FWHM size of the nuclear CLR as traced by the [Ca  VIII ] and narrow Br γ line. We find a FWHM size of 2.2 mas (0.4 pc), fully in line with the expectation of the CLR located between the BLR and narrow line region. Combining all of these measurements together with larger scale near-IR integral field unit and mid-IR interferometry data, we are able to comprehensively map the structure and dynamics of gas and dust from 0.01 to 100 pc. 
    more » « less
  2. ABSTRACT

    To understand the mass distribution and co-evolution of supermassive black holes with their host galaxy, it is crucial to measure the black hole mass of AGN. Reverberation mapping is a unique tool to estimate the black hole masses in AGN. We performed spectroscopic reverberation study using long-term monitoring data with more than 100 spectra of a radio-loud quasar PKS 0736 + 017 to estimate the size of the broad-line region (BLR) and black hole mass. The optical spectrum shows strong H β and H γ emission lines. We generated the light curves of 5100 Å continuum flux (f5100), H β, and H γ. All the light curves are found to be strongly variable with fractional variability of 69 per cent, 21 per cent, 30 per cent for V-band, H β, and H γ light curves, respectively. Along with the thermal contribution, non-thermal emission contributes to the estimated continuum luminosity at 5100 Å. Using different methods, e.g. CCF, JAVELIN, von-neumann, we estimated the size of the BLR, which is found to be 66.4$^{+6.0}_{-4.2}$ light days in the rest frame. The BLR size combined with the line width of H β provides a black hole mass of 7.32$^{+0.89}_{-0.91} \times 10^{7}M_{\odot }$. The source closely follows the BLR size–luminosity relation of AGN.

     
    more » « less
  3. This work focuses on active galactic nuclei (AGNs) and on the relation between the sizes of the hot dust continuum and the broad-line region (BLR). We find that the continuum size measured using optical/near-infrared interferometry (OI) is roughly twice that measured by reverberation mapping (RM). Both OI and RM continuum sizes show a tight relation with the H β BLR size, with only an intrinsic scatter of 0.25 dex. The masses of supermassive black holes (BHs) can hence simply be derived from a dust size in combination with a broad line width and virial factor. Since the primary uncertainty of these BH masses comes from the virial factor, the accuracy of the continuum-based BH masses is close to those based on the RM measurement of the broad emission line. Moreover, the necessary continuum measurements can be obtained on a much shorter timescale than those required monitoring for RM, and they are also more time efficient than those needed to resolve the BLR with OI. The primary goal of this work is to demonstrate a measuring of the BH mass based on the dust-continuum size with our first calibration of the R BLR – R d relation. The current limitation and caveats are discussed in detail. Future GRAVITY observations are expected to improve the continuum-based method and have the potential of measuring BH masses for a large sample of AGNs in the low-redshift Universe. 
    more » « less
  4. Abstract We perform a systematic survey of active galactic nuclei (AGNs) continuum lags using ∼3 days cadence gri -band light curves from the Zwicky Transient Facility. We select a sample of 94 type 1 AGNs at z < 0.8 with significant and consistent inter-band lags based on the interpolated cross-correlation function method and the Bayesian method JAVELIN . Within the framework of the “lamp-post” reprocessing model, our findings are: (1) The continuum emission (CE) sizes inferred from the data are larger than the disk sizes predicted by the standard thin-disk model. (2) For a subset of the sample, the CE size exceeds the theoretical limit of the self-gravity radius (12 lt-days) for geometrically thin disks. (3) The CE size scales with continuum luminosity as R CE ∝ L 0.48±0.04 with a scatter of 0.2 dex, analogous to the well-known radius–luminosity relation of broad H β . These findings suggest a significant contribution of diffuse continuum emission from the broad-line region (BLR) to AGN continuum lags. We find that the R CE – L relation can be explained by a photoionization model that assumes ∼23% of the total flux comes from the diffuse BLR emission. In addition, the ratio of the CE size and model-predicted disk size anticorrelates with the continuum luminosity, which is indicative of a potential nondisk BLR lag contribution evolving with the luminosity. Finally, a robust positive correlation between the CE size and black hole mass is detected. 
    more » « less
  5. Abstract We present 0.″035 resolution (∼200 pc) imaging of the 158 μ m [C ii ] line and the underlying dust continuum of the z = 6.9 quasar J234833.34–305410.0. The 18 hour Atacama Large Millimeter/submillimeter Array observations reveal extremely compact emission (diameter ∼1 kpc) that is consistent with a simple, almost face-on, rotation–supported disk with a significant velocity dispersion of ∼160 km s −1 . The gas mass in just the central 200 pc is ∼4 × 10 9 M ⊙ , about a factor of two higher than that of the central supermassive black hole. Consequently we do not resolve the black hole’s sphere of influence, and find no kinematic signature of the central supermassive black hole. Kinematic modeling of the [C ii ] line shows that the dynamical mass at large radii is consistent with the gas mass, leaving little room for a significant mass contribution by stars and/or dark matter. The Toomre–Q parameter is less than unity throughout the disk, and thus is conducive to star formation, consistent with the high-infrared luminosity of the system. The dust in the central region is optically thick, at a temperature >132 K. Using standard scaling relations of dust heating by star formation, this implies an unprecedented high star formation rate density of >10 4 M ⊙ yr −1 kpc −2 . Such a high number can still be explained with the Eddington limit for star formation under certain assumptions, but could also imply that the central supermassive black hole contributes to the heating of the dust in the central 200 pc. 
    more » « less