skip to main content


Title: Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru
Abstract. Oxygen-deficient zones (ODZs) are major sites of net naturalnitrous oxide (N2O) production and emissions. In order to understandchanges in the magnitude of N2O production in response to globalchange, knowledge on the individual contributions of the major microbialpathways (nitrification and denitrification) to N2O production andtheir regulation is needed. In the ODZ in the coastal area off Peru, thesensitivity of N2O production to oxygen and organic matter wasinvestigated using 15N tracer experiments in combination with quantitative PCR (qPCR) andmicroarray analysis of total and active functional genes targeting archaeal amoAand nirS as marker genes for nitrification and denitrification, respectively.Denitrification was responsible for the highest N2O production with amean of 8.7 nmol L−1 d−1 but up to 118±27.8 nmol L−1 d−1 just below the oxic–anoxic interface. The highest N2O productionfrom ammonium oxidation (AO) of 0.16±0.003 nmol L−1 d−1occurred in the upper oxycline at O2 concentrations of 10–30 µmol L−1 which coincided with the highest archaeal amoA transcripts/genes.Hybrid N2O formation (i.e., N2O with one N atom from NH4+and the other from other substrates such as NO2-) was the dominantspecies, comprising 70 %–85 % of total produced N2O fromNH4+, regardless of the ammonium oxidation rate or O2concentrations. Oxygen responses of N2O production varied withsubstrate, but production and yields were generally highest below 10 µmol L−1 O2. Particulate organic matter additions increasedN2O production by denitrification up to 5-fold, suggesting increasedN2O production during times of high particulate organic matter export.High N2O yields of 2.1 % from AO were measured, but the overallcontribution by AO to N2O production was still an order of magnitudelower than that of denitrification. Hence, these findings show thatdenitrification is the most important N2O production process in low-oxygen conditions fueled by organic carbon supply, which implies a positivefeedback of the total oceanic N2O sources in response to increasingoceanic deoxygenation.  more » « less
Award ID(s):
1019624 1657663
NSF-PAR ID:
10184777
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
17
Issue:
8
ISSN:
1726-4189
Page Range / eLocation ID:
2263 to 2287
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NOTE: THIS MS IS TO BE SUBMITTED FOLLOWING OUTCOME OF NATURE COMMUNICATIONS REVIEW OF A COMPANION MS. ABSTRACT (246 words, 1,457 characters including spaces) We measured the oxidation rates of N supplied as urea (UO) and ammonium (AO) in continental shelf and slope waters of the Southern Ocean west of the Antarctic Peninsula during the austral summer of 2018. The response of rates to substrate concentration varied by water mass. Rates increased moderately (up to 200%) with 440 vs 6 nM substrate amendments to samples from the Winter Water (WW, sampled at 35-100 m), but decreased (down to 7%) in samples from the Circumpolar Deep Water (CDW, 175-1000 m). AO rates decreased more than UO rates. This response suggests that CDW Thaumarchaeota are not well adapted to short-term variation in substrate concentrations and that even low amendments (we used 44 or 47 nM) may inhibit oxidation. Rates of AO and UO were not correlated; nor were they correlated with the abundance, or ratios of abundance, of marker genes; or with [NH4+]; or [urea]. UO and AO were distributed uniformly across the study area within a water mass; however, they displayed strong vertical gradients. Rates in most samples from Antarctic Surface Water (ASW, 10-15 m) were below the limit of detection. Highest rates of both processes were in samples from the WW (21.2 and 1.6 nmol L-1 d-1 for AO vs UO, respectively) and CDW (7.9 and 2.5 nmol L-1 d-1), comparable to rates from the study area reported previously. The contribution of UO to nitrite production was ~24% of that from AO alone, comparable to ratios measured at lower latitudes. 
    more » « less
  2. Abstract

    Marine oxygen deficient zones are dynamic areas of microbial nitrogen cycling. Nitrification, the microbial oxidation of ammonia to nitrate, plays multiple roles in the biogeochemistry of these regions, including production of the greenhouse gas nitrous oxide (N2O). We present here the results of two oceanographic cruises investigating nitrification, nitrifying microorganisms, and N2O production and distribution from the offshore waters of the Eastern Tropical South Pacific. On each cruise, high‐resolution measurements of ammonium ([NH4+]), nitrite ([NO2]), and N2O were combined with15N tracer‐based determination of ammonia oxidation, nitrite oxidation, nitrate reduction, and N2O production rates. Depth‐integrated inventories of NH4+and NO2were positively correlated with one another and with depth‐integrated primary production. Depth‐integrated ammonia oxidation rates were correlated with sinking particulate organic nitrogen flux but not with primary production; ammonia oxidation rates were undetectable in trap‐collected sinking particulate material. Nitrite oxidation rates exceeded ammonia oxidation rates at most mesopelagic depths. We found positive correlations between archaealamoAgenes and ammonia oxidation rates and betweenNitrospina‐like 16S rRNA genes and nitrite oxidation rates. N2O concentrations in the upper oxycline reached values of >140 nM, even at the western extent of the cruise track, supporting air‐sea fluxes of up to 1.71 μmol m−2 day−1. Our results suggest that a source of NO2other than ammonia oxidation may fuel high rates of nitrite oxidation in the offshore Eastern Tropical South Pacific and that air‐sea fluxes of N2O from this region may be higher than previously estimated.

     
    more » « less
  3. We performed assays of chemoautotrophic carbon fixation and compared measured rates to rates predicted from oxidation of ammonia (AO), urea (UO) and nitrite (NO) N. Water samples used in this study were taken from aerobic shelf waters at stations on the continental shelf and slope west of the Antarctic Peninsula during January and February of 2018 (LMG1801). Chemoautotrophic carbon fixation rates averaged 1.8 and 1.7 nmol C L-1 d-1 in Winter Water (WW, 35-100 m) and Circumpolar Deep Water (CDW, 175-1000 m) water masses, respectively. Integrated over 1 year and a 440 m water column (excluding the Antarctic Surface Water mass, 0-34 m), chemoautotrophic production accounted for ~7 gC m2 yr-1, compared to an estimated mean annual photoautotrophic production of 180 gC m2 y-1. Chemoautotrophy in WW samples supported by AO, UO or NO was the equivalent of 0.91, 0.06, 0.13 nmol C L-1 d-1, while it was the equivalent of 0.37, 0.21 and 0.08 nmol C L-1 d-1 in samples from the CDW water mass. Chemoautotrophy coupled to AO+UO accounted for ~124% and ~55% of measured C fixation rates in these water masses, while chemoautotrophy coupled to complete nitrification (AO+UO+NO) accounted for ~128 and ~60% of measured C fixation rates. The mean turnover times for nitrite pools base on NO were 138 ± 35 d and 15 ± 3 d in WW and CDW samples, respectively. The rate of nitrite production from AO+UO in WW and CDW samples was 503 ± 233 and 24 ± 7 nmol L-1 d-1, respectively. The replacement time for the nitrite pool in the WW water mass by AO+UO calculated from these averages is 33 d while it is 9 d in the CDW. These calculations suggest the possibility of an additional sink for nitrite in the WW. 
    more » « less
  4. Abstract Due to the heterogeneous nature of soil pore structure, processes such as nitrification and denitrification can occur simultaneously at microscopic levels, making prediction of small-scale nitrous oxide (N 2 O) emissions in the field notoriously difficult. We assessed N 2 O+N 2 emissions from soils under maize ( Zea mays L .) , switchgrass ( Panicum virgatum L.), and energy sorghum ( Sorghum bicolor L.), three potential bioenergy crops in order to identify the importance of different N 2 O sources to microsite production, and relate N 2 O source differences to crop-associated differences in pore structure formation. The combination of isotopic surveys of N 2 O in the field during one growing season and X-ray computed tomography (CT) enabled us to link results from isotopic mappings to soil structural properties. Further, our methodology allowed us to evaluate the potential for in situ N 2 O suppression by biological nitrification inhibition (BNI) in energy sorghum. Our results demonstrated that the fraction of N 2 O originating from bacterial denitrification and reduction of N 2 O to N 2 is largely determined by the volume of particulate organic matter occluded within the soil matrix and the anaerobic soil volume. Bacterial denitrification was greater in switchgrass than in the annual crops, related to changes in pore structure caused by the coarse root system. This led to high N-loses through N 2 emissions in the switchgrass system throughout the season a novel finding given the lack of data in the literature for total denitrification. Isotopic mapping indicated no differences in N 2 O-fluxes or their source processes between maize and energy sorghum that could be associated with the release of BNI by the investigated sorghum variety. The results of this research show how differences in soil pore structures among cropping systems can determine both N 2 O production via denitrification and total denitrification N losses in situ. 
    more » « less
  5. null (Ed.)
    The increased environmental abundance of anthropogenic reactive nitrogen species (Nr = ammonium [NH4+], nitrite [NO2−] and nitrate [NO3−]) may increase atmospheric nitrous oxide (N2O) concentrations, and thus global warming and stratospheric ozone depletion. Nitrogen cycling and N2O production, reduction, and emissions could be amplified in carbonate karst aquifers because of their extensive global range, susceptibility to nitrogen contamination, and groundwater-surface water mixing that varies redox conditions of the aquifer. The magnitude of N2O cycling in karst aquifers is poorly known, however, and thus we sampled thirteen springs discharging from the karstic Upper Floridan Aquifer (UFA) to evaluate N2O cycling. The springs can be separated into three groups based on variations in subsurface residence times, differences in surface–groundwater interactions, and variable dissolved organic carbon (DOC) and dissolved oxygen (DO) concentrations. These springs are oxic to sub-oxic and have NO3− concentrations that range from < 0.1 to 4.2 mg N-NO3−/L and DOC concentrations that range from < 0.1 to 50 mg C/L. Maximum spring water N2O concentrations are 3.85 μg N-N2O/L or ~ 12 times greater than water equilibrated with atmospheric N2O. The highest N2O concentrations correspond with the lowest NO3− concentrations. Where recharge water has residence times of a few days, partial denitrification to N2O occurs, while complete denitrification to N2 is more prominent in springs with longer subsurface residence times. Springs with short residence times have groundwater emission factors greater than the global average of 0.0060, reflecting N2O production, whereas springs with residence times of months to years have groundwater emission factors less than the global average. These findings imply that N2O cycling in karst aquifers depends on DOC and DO concentrations in recharged surface water and subsequent time available for N processing in the subsurface. 
    more » « less