skip to main content


Title: Global Nitrous Oxide Production Determined by Oxygen Sensitivity of Nitrification and Denitrification
Abstract

The ocean is estimated to contribute up to ~20% of global fluxes of atmospheric nitrous oxide (N2O), an important greenhouse gas and ozone depletion agent. Marine oxygen minimum zones contribute disproportionately to this flux. To further understand the partition of nitrification and denitrification and their environmental controls on marine N2O fluxes, we report new relationships between oxygen concentration and rates of N2O production from nitrification and denitrification directly measured with15N tracers in the Eastern Tropical Pacific. Highest N2O production rates occurred near the oxic‐anoxic interface, where there is strong potential for N2O efflux to the atmosphere. The dominant N2O source in oxygen minimum zones was nitrate reduction, the rates of which were 1 to 2 orders of magnitude higher than those of ammonium oxidation. The presence of oxygen significantly inhibited the production of N2O from both nitrification and denitrification. These experimental data provide new constraints to a multicomponent global ocean biogeochemical model, which yielded annual oceanic N2O efflux of 1.7–4.4 Tg‐N (median 2.8 Tg‐N, 1 Tg = 1012 g), with denitrification contributing 20% to the oceanic flux. Thus, denitrification should be viewed as a net N2O production pathway in the marine environment.

 
more » « less
Award ID(s):
1657663
NSF-PAR ID:
10459975
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
32
Issue:
12
ISSN:
0886-6236
Page Range / eLocation ID:
p. 1790-1802
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Oceanic emissions of nitrous oxide (N2O) account for roughly one‐third of all natural sources to the atmosphere. Hot‐spots of N2O outgassing occur over oxygen minimum zones (OMZs), where the presence of steep oxygen gradients surrounding anoxic waters leads to enhanced N2O production from both nitrification and denitrification. However, the relative contributions from these pathways to N2O production and outgassing in these regions remains poorly constrained, in part due to shared intermediary nitrogen tracers, and the tight coupling of denitrification sources and sinks. To shed light on this problem, we embed a new, mechanistic model of the OMZ nitrogen cycle within a three‐dimensional eddy‐resolving physical‐biogeochemical model of the Eastern Tropical South Pacific (ETSP), tracking contributions from remote advection, atmospheric exchange, and local nitrification and denitrification. The model indicates that net N2O production from denitrification is approximately one order of magnitude greater than nitrification within the ETSP OMZ. However, only ∼32% of denitrification‐derived N2O production ultimately outgasses to the atmosphere in this region (contributing ∼36% of the air‐sea N2O flux on an annual basis), while the remaining is exported out of the domain. Instead, remotely produced N2O advected into the OMZ region accounts for roughly half (∼57%) of the total N2O outgassing, with smaller contributions from nitrification (∼7%). Our results suggests that, together with enhanced production by denitrification, upwelling of remotely derived N2O contributes the most to N2O outgassing over the ETSP OMZ.

     
    more » « less
  2. Abstract

    Marine oxygen deficient zones are dynamic areas of microbial nitrogen cycling. Nitrification, the microbial oxidation of ammonia to nitrate, plays multiple roles in the biogeochemistry of these regions, including production of the greenhouse gas nitrous oxide (N2O). We present here the results of two oceanographic cruises investigating nitrification, nitrifying microorganisms, and N2O production and distribution from the offshore waters of the Eastern Tropical South Pacific. On each cruise, high‐resolution measurements of ammonium ([NH4+]), nitrite ([NO2]), and N2O were combined with15N tracer‐based determination of ammonia oxidation, nitrite oxidation, nitrate reduction, and N2O production rates. Depth‐integrated inventories of NH4+and NO2were positively correlated with one another and with depth‐integrated primary production. Depth‐integrated ammonia oxidation rates were correlated with sinking particulate organic nitrogen flux but not with primary production; ammonia oxidation rates were undetectable in trap‐collected sinking particulate material. Nitrite oxidation rates exceeded ammonia oxidation rates at most mesopelagic depths. We found positive correlations between archaealamoAgenes and ammonia oxidation rates and betweenNitrospina‐like 16S rRNA genes and nitrite oxidation rates. N2O concentrations in the upper oxycline reached values of >140 nM, even at the western extent of the cruise track, supporting air‐sea fluxes of up to 1.71 μmol m−2 day−1. Our results suggest that a source of NO2other than ammonia oxidation may fuel high rates of nitrite oxidation in the offshore Eastern Tropical South Pacific and that air‐sea fluxes of N2O from this region may be higher than previously estimated.

     
    more » « less
  3. Abstract

    Nitrous oxide (N2O) is a powerful greenhouse gas, and oceanic sources account for up to one third of the total natural flux to the atmosphere. In oxygen‐deficient zones (ODZs) like the Eastern Tropical North Pacific (ETNP), N2O can be produced and consumed by several biological processes. In this study, the concentration and isotopocule ratios of N2O from a 2016 cruise in the ETNP were analyzed to examine sources of and controls on N2O cycling across this region. Along the north‐south transect, three distinct biogeochemical regimes were identified: background, core‐ODZ, and high‐N2O stations. Background stations were characterized by smaller variations in N2O concentration and isotopic profiles relative to the other regimes. Core‐ODZ stations were characterized by co‐occurring N2O production and consumption at anoxic depths, indicated by high δ18O‐N2O (>90‰) and low δ15N2Oβ(<−10‰) values, and confirmed by a time‐dependent model, which indicated that N2O production via denitrification was significant and may occur with a nonzero site preference. High‐N2O stations, located at the periphery of a mesoscale eddy, were defined by N2O reaching 126.07 ± 12.6 nM and low oxygen concentrations expanding into near‐surface isopycnals. At these stations, model results indicated significant N2O production from ammonia‐oxidizing archaea and denitrification from nitrate at the N2O maximum within the oxycline, while bacterial nitrification and denitrification from nitrite were insignificant. This study also represents the first in the ETNP to link N2O production mechanisms to a mesoscale eddy through isotopocule measurements, suggesting the importance of eddies to spatiotemporal variability in N2O cycling and emissions from this region.

     
    more » « less
  4. Abstract

    Nitrous oxide (N2O), a potent greenhouse gas, is produced disproportionately in marine oxygen deficient zones (ODZs). To quantify spatiotemporal variation in N2O cycling in an ODZ, we analyzed N2O concentration and isotopologues along a transect through the eastern tropical North Pacific (ETNP). At several stations along this transect, N2O concentrations reached a near surface maximum that exceeded prior measurements in this region, of up to 226.1 ± 20.5 nM at the coast. Above theσθ = 25.0 kg/m3isopycnal, Keeling plot analysis revealed two sources to the near‐surface N2O maximum, with different δ15N2Oαand δ15N2Oβvalues, but each with a site preference (SP) of 6‰–8‰. Given expected SPs for nitrification and denitrification, each of these sources could be comprised of 17%–26% nitrification (bacterial or archeal), and 74%–83% denitrification (or nitrifier‐denitrification). Below theσθ = 25.0 kg/m3isopycnal, box model analysis indicated that the observed 46‰–50‰ SPs in the anoxic core of the ODZ cannot be reproduced in a steady state context without an SP for N2O production by denitrification, and may indicate instead a transient net consumption of N2O. Furthermore, time‐dependent model results indicated that while δ15N2Oαand δ18O‐N2O reflect both N2O production and consumption in the anoxic core of the ODZ, δ15N2Oβpredominantly reflects N2O sources. Finally, we infer that the high (N2O) observed at some stations derive from a set of conditions supporting high rates of N2O production that have not been previously encountered in this region.

     
    more » « less
  5. Abstract

    The El Niño‐Southern Oscillation (ENSO) is a natural climate phenomenon that alters the biogeochemical and physical dynamics of the Eastern Tropical Pacific Ocean. Its two phases, El Niño and La Niña, are characterized by decreased and increased coastal upwelling, respectively, which have cascading effects on primary productivity, organic matter supply, and ocean‐atmosphere interactions. The Eastern Tropical South Pacific oxygen minimum zone is a source of nitrous oxide (N2O), a potent greenhouse gas, to the atmosphere. Here, we present the first study to directly compare N2O sources during opposing ENSO phases using N2O isotopocule analyses. Our data show that during La Niña, N2O accumulation increased six‐fold in the upper 100 m of the water column, and N2O fluxes to the atmosphere increased up to 20‐fold. N2O isotopocule data demonstrated substantial increases in δ18O up to 60.5‰ and decreases in δ15Nβdown to −10.3‰ in the oxycline, signaling a shift in N2O cycling during La Niña compared to El Niño. During El Niño, N2O production was primarily due to ammonia‐oxidizing archaea, whereas during La Niña, N2O production by incomplete denitrification supplemented that from ammonia‐oxidation, with N2O consumption likely maintaining the high site preference values (up to 26.7‰). Ultimately, our results illustrate a strong connection between upwelling intensity, biogeochemistry, and N2O flux to the atmosphere. Additionally, they highlight the combined power of N2O isotopocule analysis and repeat measurements in the same region to constrain N2O interannual variability and cycling dynamics under different climate scenarios.

     
    more » « less