skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of Controlled Cooling Rates During Thermal Processing of Ti 6% Al 4% V Alloys Using In-Situ Scanning Electron Microscopy
ABSTRACT We describe experimental approaches to real time examination of the microstructural evolution of Ti 6%Al 4%V upon cooling from above the beta transus (~995 °C) while imaging in the scanning electron microscope. Ti 6%Al 4%V is a two phase, α+β titanium alloy with high strength and corrosion resistance. The β →α transformation on cooling can give rise to different microstructures and properties through various thermal treatments. Fully lamellar microstructures, bi-modal microstructures, and equiaxed microstructures can each be obtained by accessing different cooling rates upon the final treatment above the beta temperature, each resulting in uniquely enhanced material properties. Utilizing the capabilities of a heating/ tensile stage developed by Kammrath & Weiss Inc., are able to apply real-time imaging techniques in the scanning electron microscope to monitor the development of the microstructure. Annealing temperatures up to 1100 °C are attainable, with cooling rates ranging from 0.1 ° C per second to 3.3 °C per second. This has allowed us to directly observe the formation of lamellae at different annealing temperature/ cooling rate combinations to determine the lamellar microstructure width, separation, and colony size.  more » « less
Award ID(s):
1729336
PAR ID:
10184832
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
MRS Advances
Volume:
5
Issue:
29-30
ISSN:
2059-8521
Page Range / eLocation ID:
1603 to 1611
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The formation of isothermal ω phase precipitates and its influence on subsequent fine-scale α precipitation is investigated in a metastable β-titanium alloy, Ti-10V-2Fe-3Al. Atom-probe tomography and high-resolution transmission electron microscopy reveal that the rejection of Al, a potent α stabilizer, from the growing isothermal ω precipitates at 330°C, aids in the formation of α precipitates. Additionally, the presence of α/ω and α/β interfaces conclusively establish that these α precipitates form at the β/ω interface. Interestingly, the local Al pile-up at this interface results in a substantially higher than equilibrium Al content within the α precipitates at the early stages of formation. This can be rationalized based on a novel three-phase β+ω+α metastable equilibrium at a lower annealing temperature (330°C, below the ω solvus). Subsequent annealing at a higher temperature (600°C, above the ω solvus), dissolves the ω precipitates and re-establishes the two-phase β+α equilibrium in concurrence with solution thermodynamic predictions. 
    more » « less
  2. Abstract While monazite (LaPO4) does not flash sinter even at high fields of 1130 V/cm and temperatures of 1450°C, composite systems of 8YSZ–LaPO4and Al2O3–LaPO4have been found to more readily flash sinter. 8YSZ added to LaPO4greatly lowered the furnace temperature for flash to 1100°C using a field of only 250 V/cm. In these experiments,‐Al2O3alone also did not flash sinter at 1450°C even with high fields of 1130 V/cm, but composites of Al2O3–LaPO4powders flash sintered at 900‐1080 V/cm at 1450°C. Alumina–monazite (Al2O3–LaPO4) composites with compositions ranging from 25 vol% to 75 vol% Al2O3were flash sintered with current limits from 2 to 25 mA/mm2. Microstructures were evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A eutectic microstructure was observed to form in all flash sintered Al2O3–LaPO4composites. With higher power (higher current limits), eutectic structures with regular lamellar regions were found to coexist in the channeled region (where both the current and the temperature were the highest) with large hexagonal‐shaped‐Al2O3grains (up to 75 m) and large irregular LaPO4grains. With lower power (lower current limits), an irregular eutectic microstructure was dominant, and there was minimal abnormal grain growth. These results indicate that Al2O3–LaPO4is a eutectic‐forming system and the eutectic temperature was reached locally during flash sintering in regions. These eutectic microstructures with lamellar dimensions on the scale of 100 nm offer potential for improved mechanical properties. 
    more » « less
  3. Extensive research has been conducted on Ti–Fe–Sn ultrafine eutectic composites due to their high yield strength, compared to conventional microcrystalline alloys. The unique microstructure of ultrafine eutectic composites, which consists of the ultrafine-grained lamella matrix with the formation of primary dendrites, leads to high strength and desirable plasticity. A lamellar structure is known for its high strength with limited plasticity, owing to its interface-strengthening effect. Thus, extensive efforts have been conducted to induce the lamellar structure and control the volume fraction of primary dendrites to enhance plasticity by tailoring the compositions. In this study, however, it was found that not only the volume fraction of primary dendrites but also the morphology of dendrites constitute key factors in inducing excellent ductility. We selected three compositions of Ti–Fe–Sn ultrafine eutectic composites, considering the distinct volume fractions and morphologies of β-Ti dendrites based on the Ti–Fe–Sn ternary phase diagram. As these compositions approach quasi-peritectic reaction points, the α″-Ti martensitic phase forms within the primary β-Ti dendrites due to under-cooling effects. This pre-formation of the α″-Ti martensitic phase effectively governs the growth direction of β-Ti dendrites, resulting in the development of round-shaped primary dendrites during the quenching process. These microstructural evolutions of β-Ti dendrites, in turn, lead to an improvement in ductility without a significant compromise in strength. Hence, we propose that fine-tuning the composition to control the primary dendrite morphology can be a highly effective alloy design strategy, enabling the attainment of greater macroscopic plasticity without the typical ductility and strength trade-off. 
    more » « less
  4. Titanium alloys typically do not contain hard inclusion phases typically observed in other metallic alloys. However, the characteristic scoring marks and more distinctive micro- and/or macro-chippings are ubiquitously observed on the flank faces of cutting tools in machining titanium alloys, which is the direct evidence of abrasive wear (hard phase(s) in the microstructure abrading and damaging the flank surface). Thus, an important question lies with the nature of the hard phases present in the titanium microstructure. In this work, we present a comprehensive study that examines the microstructural impact on flank wear attained by turning various Ti-6Al- 4V bars having distinct microstructures with uncoated carbide inserts. In particular, four samples with elongated, mill-annealed, solution treated & annealed and fully-lamellar microstructures were selected for our turning experiments. After turning each sample, the flank surface of each insert was observed with confocal laser scanning microscopy (CLSM) and analyzed to determine the flank wear behavior in relation to each sample' distinct microstructures. To characterize the microstructure, scanning electron microscopy (SEM) together with Orientation imaging microstructure (OIM) was used to identify and distinguish the phases present in each sample and the content and topography of each phase was correlated to the behavior of flank wear. The flank wear is also affected by the interface conditions such as temperature and pressure, which were estimated using finite element analysis (FEA) models. The temperature dependent abrasion models enable us to estimate the flank wear rate for each microstructure, and are compared with the experimentally measured wear data. 
    more » « less
  5. Titanium alloys typically do not contain hard inclusion phases typically observed in other metallic alloys. However, the characteristic scoring marks and more distinctive micro- and/or macro-chippings are ubiquitously observed on the flank faces of cutting tools in machining titanium alloys, which is the direct evidence of abrasive wear (hard phase(s) in the microstructure abrading and damaging the flank surface). Thus, an important question lies with the nature of the hard phases present in the titanium microstructure. In this work, we present a comprehensive study that examines the microstructural impact on flank wear attained by turning various Ti-6Al-4V bars having distinct microstructures with uncoated carbide inserts. In particular, four samples with elongated, mill-annealed, solution treated & annealed and fully-lamellar microstructures were selected for our turning experiments. After turning each sample, the flank surface of each insert was observed with confocal laser scanning microscopy (CLSM) and analyzed to determine the flank wear behavior in relation to each sample' distinct microstructures. To characterize the microstructure, scanning electron microscopy (SEM) together with Orientation imaging microstructure (OIM) was used to identify and distinguish the phases present in each sample and the content and topography of each phase was correlated to the behavior of flank wear. The flank wear is also affected by the interface conditions such as temperature and pressure, which were estimated using finite element analysis (FEA) models. The temperature dependent abrasion models enable us to estimate the flank wear rate for each microstructure, and are compared with the experimentally measured wear data. 
    more » « less