skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Role of Aluminum rejection from isothermal ω precipitates on the formation of α precipitates in the metastable β-titanium alloy Ti-10V-2Fe-3Al
The formation of isothermal ω phase precipitates and its influence on subsequent fine-scale α precipitation is investigated in a metastable β-titanium alloy, Ti-10V-2Fe-3Al. Atom-probe tomography and high-resolution transmission electron microscopy reveal that the rejection of Al, a potent α stabilizer, from the growing isothermal ω precipitates at 330°C, aids in the formation of α precipitates. Additionally, the presence of α/ω and α/β interfaces conclusively establish that these α precipitates form at the β/ω interface. Interestingly, the local Al pile-up at this interface results in a substantially higher than equilibrium Al content within the α precipitates at the early stages of formation. This can be rationalized based on a novel three-phase β+ω+α metastable equilibrium at a lower annealing temperature (330°C, below the ω solvus). Subsequent annealing at a higher temperature (600°C, above the ω solvus), dissolves the ω precipitates and re-establishes the two-phase β+α equilibrium in concurrence with solution thermodynamic predictions.  more » « less
Award ID(s):
1905844
PAR ID:
10513468
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Scripta Materialia
Volume:
234
Issue:
C
ISSN:
1359-6462
Page Range / eLocation ID:
115565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. β-titanium (β-Ti) alloys are useful in diverse industries because their mechanical properties can be tuned by transforming the metastable β phase into other metastable and stable phases. Relationships between lattice parameter and β-Ti alloy concentrations have been explored, but the lattice parameter evolution during β-phase transformations is not well understood. In this work, the β-Ti alloys, Ti-11Cr, Ti-11Cr-0.85Fe, Ti-11Cr-5.3Al, and Ti-11Cr-0.85Fe-5.3Al (all in at.%), underwent a 400 °C aging treatment for up to 12 h to induce the β-to-ω and β-to-α phase transformations. Phase identification and lattice parameters were measured in situ using high-temperature X-ray diffraction. Phase compositions were measured ex situ using atom probe tomography. During the phase transformations, Cr and Fe diffused from the ω and α phases into the β matrix, and the β-phase lattice parameter exhibited a corresponding decrease. The decrease in β-phase lattice parameter affected the α- and ω-phase lattice parameters. The α phase in the Fe-free alloys exhibited α-phase c/a ratios close to those of pure Ti. A larger β-phase composition change in Ti-11Cr resulted in larger ω-phase lattice parameter changes than in Ti-11Cr-0.85Fe. This work illuminates the complex relationship between diffusion, composition, and structure for these diffusive/displacive transformations. 
    more » « less
  2. A nano-scaled shuffle-induced modulated structure and heating-induced ordering have been characterized in a metastable β-titanium alloy, Ti-5Al-5Mo-5V-3Cr, and their inter-relationship was investigated through in-situ and ex-situ conventional and aberration-corrected scanning/transmission electron microscopy and atom probe tomography. The nano-scaled O′ phase with a disordered orthorhombic-modulated structure formed by the transverse phonon was characterized for the first time to be stable from room temperature to ∼200°C. The O″ phase with an ordered orthorhombic structure formed from the β phase during aging above the O′ phase solvus temperature, where Al segregation in nano-scaled regions led to ordering of every third {011} planes. 
    more » « less
  3. This work proposes a methodology for designing high-strength precipitation-hardened high entropy alloys (HEAs) with an FCC matrix and L12 precipitates. High-throughput solidification calculations were conducted using the CALPHAD method, evaluating 11,235 alloys in the Cr-Co-Ni-Al-Ti system under specific boundary conditions. The acquired information was used to filter the alloys, focusing on alloys exhibiting an FCC+L12 phase field at 750 °C, a solidification interval narrower than 100 °C, and a solvus temperature under 1100 çC. The filtered alloys were analyzed to estimate their solid solution and precipitation hardening contributions to yield strength, with antiphase boundary energy (APB) assessed using two models. Three alloys were selected for testing the proposed strategy, including one with the highest yield stress and others for comparison. These alloys were produced, processed, and characterized using DSC, synchrotron XRD, SEM, and TEM. The results showed that the desired microstructure was achieved, with the alloys consisting of an FCC matrix and a high-volume fraction of L12 precipitates. Tensile tests at room temperature, 650 °C, 750 °C, and 850 °C demonstrated that the proposed model predicts well the yield strength trends, demonstrating the potential of the proposed approach for accelerating the discovery and development of novel HEAs with tailored properties. 
    more » « less
  4. ABSTRACT We describe experimental approaches to real time examination of the microstructural evolution of Ti 6%Al 4%V upon cooling from above the beta transus (~995 °C) while imaging in the scanning electron microscope. Ti 6%Al 4%V is a two phase, α+β titanium alloy with high strength and corrosion resistance. The β →α transformation on cooling can give rise to different microstructures and properties through various thermal treatments. Fully lamellar microstructures, bi-modal microstructures, and equiaxed microstructures can each be obtained by accessing different cooling rates upon the final treatment above the beta temperature, each resulting in uniquely enhanced material properties. Utilizing the capabilities of a heating/ tensile stage developed by Kammrath & Weiss Inc., are able to apply real-time imaging techniques in the scanning electron microscope to monitor the development of the microstructure. Annealing temperatures up to 1100 °C are attainable, with cooling rates ranging from 0.1 ° C per second to 3.3 °C per second. This has allowed us to directly observe the formation of lamellae at different annealing temperature/ cooling rate combinations to determine the lamellar microstructure width, separation, and colony size. 
    more » « less
  5. Phase transitions in metastable α-, κ(ε)-, and γ-Ga2O3 films to thermodynamically stable β-Ga2O3 during annealing in air, N2, and vacuum have been systematically investigated via in situ high-temperature x-ray diffraction (HT-XRD) and scanning electron microscopy (SEM). These respective polymorphs exhibited thermal stability to ∼471–525 °C, ∼773–825 °C, and ∼490–575 °C before transforming into β-Ga2O3, across all tested ambient conditions. Particular crystallographic orientation relationships were observed before and after the phase transitions, i.e., (0001) α-Ga2O3 → (2¯01) β-Ga2O3, (001) κ(ε)-Ga2O3 → (310) and (2¯01) β-Ga2O3, and (100) γ-Ga2O3 → (100) β-Ga2O3. The phase transition of α-Ga2O3 to β-Ga2O3 resulted in catastrophic damage to the film and upheaval of the surface. The respective primary and possibly secondary causes of this damage are the +8.6% volume expansion and the dual displacive and reconstructive transformations that occur during this transition. The κ(ε)- and γ-Ga2O3 films converted to β-Ga2O3 via singular reconstructive transformations with small changes in volume and unchanged surface microstructures. 
    more » « less