skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Property RD and Hypercontractivity for Orthogonal Free Quantum Groups
Abstract We prove that the twisted property RD introduced in [ 2] fails to hold for all non-Kac type, non-amenable orthogonal free quantum groups. In the Kac case we revisit property RD, proving an analogue of the $$L_p-L_2$$ non-commutative Khintchine inequality for free groups from [ 29]. As an application, we give new and improved hypercontractivity and ultracontractivity estimates for the generalized heat semigroups on free orthogonal quantum groups, both in the Kac and non-Kac cases.  more » « less
Award ID(s):
1700267
PAR ID:
10185211
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We describe a connection between the subjects of cluster algebras, polynomial identity algebras, and discriminants. For this, we define the notion of root of unity quantum cluster algebras and prove that they are polynomial identity algebras. Inside each such algebra we construct a (large) canonical central subalgebra, which can be viewed as a far reaching generalization of the central subalgebras of big quantum groups constructed by De Concini, Kac, and Procesi and used in representation theory. Each such central subalgebra is proved to be isomorphic to the underlying classical cluster algebra of geometric type. When the root of unity quantum cluster algebra is free over its central subalgebra, we prove that the discriminant of the pair is a product of powers of the frozen variables times an integer. An extension of this result is also proved for the discriminants of all subalgebras generated by the cluster variables of nerves in the exchange graph. These results can be used for the effective computation of discriminants. As an application we obtain an explicit formula for the discriminant of the integral form over of each quantum unipotent cell of De Concini, Kac, and Procesi for arbitrary symmetrizable Kac–Moody algebras, where is a root of unity. 
    more » « less
  2. We study the “geometric Ricci curvature lower bound”, introduced previously by Junge, Li and LaRacuente, for a variety of examples including group von Neumann algebras, free orthogonal quantum groups [Formula: see text], [Formula: see text]-deformed Gaussian algebras and quantum tori. In particular, we show that Laplace operator on [Formula: see text] admits a factorization through the Laplace–Beltrami operator on the classical orthogonal group, which establishes the first connection between these two operators. Based on a non-negative curvature condition, we obtain the completely bounded version of the modified log-Sobolev inequalities for the corresponding quantum Markov semigroups on the examples mentioned above. We also prove that the “geometric Ricci curvature lower bound” is stable under tensor products and amalgamated free products. As an application, we obtain a sharp Ricci curvature lower bound for word-length semigroups on free group factors. 
    more » « less
  3. null (Ed.)
    To Nicolás Andruskiewitsch on his 60th birthday, with admiration We introduce bivariate versions of the continuous [Formula: see text]-Hermite polynomials. We obtain algebraic properties for them (generating function, explicit expressions in terms of the univariate ones, backward difference equations and recurrence relations) and analytic properties (determining the orthogonality measure). We find a direct link between bivariate continuous [Formula: see text]-Hermite polynomials and the star product method of [S. Kolb and M. Yakimov, Symmetric pairs for Nichols algebras of diagonal type via star products, Adv. Math. 365 (2020), Article ID: 107042, 69 pp.] for quantum symmetric pairs to establish deformed quantum Serre relations for quasi-split quantum symmetric pairs of Kac–Moody type. We prove that these defining relations are obtained from the usual quantum Serre relations by replacing all monomials by multivariate orthogonal polynomials. 
    more » « less
  4. Guruswami, Venkatesan (Ed.)
    We study the complexity of isomorphism problems for d-way arrays, or tensors, under natural actions by classical groups such as orthogonal, unitary, and symplectic groups. These problems arise naturally in statistical data analysis and quantum information. We study two types of complexity-theoretic questions. First, for a fixed action type (isomorphism, conjugacy, etc.), we relate the complexity of the isomorphism problem over a classical group to that over the general linear group. Second, for a fixed group type (orthogonal, unitary, or symplectic), we compare the complexity of the isomorphism problems for different actions. Our main results are as follows. First, for orthogonal and symplectic groups acting on 3-way arrays, the isomorphism problems reduce to the corresponding problems over the general linear group. Second, for orthogonal and unitary groups, the isomorphism problems of five natural actions on 3-way arrays are polynomial-time equivalent, and the d-tensor isomorphism problem reduces to the 3-tensor isomorphism problem for any fixed d >= 3. For unitary groups, the preceding result implies that LOCC classification of tripartite quantum states is at least as difficult as LOCC classification of d-partite quantum states for any d. Lastly, we also show that the graph isomorphism problem reduces to the tensor isomorphism problem over orthogonal and unitary groups. 
    more » « less
  5. We study the realization of acyclic cluster algebras as coordinate rings of Coxeter double Bruhat cells in Kac–Moody groups. We prove that all cluster monomials with $$\mathbf{g}$$ -vector lying in the doubled Cambrian fan are restrictions of principal generalized minors. As a corollary, cluster algebras of finite and affine type admit a complete and non-recursive description via (ind-)algebraic group representations, in a way similar in spirit to the Caldero–Chapoton description via quiver representations. In type $$A_{1}^{(1)}$$ , we further show that elements of several canonical bases (generic, triangular, and theta) which complete the partial basis of cluster monomials are composed entirely of restrictions of minors. The discrepancy among these bases is accounted for by continuous parameters appearing in the classification of irreducible level-zero representations of affine Lie groups. We discuss how our results illuminate certain parallels between the classification of representations of finite-dimensional algebras and of integrable weight representations of Kac–Moody algebras. 
    more » « less