In this paper two nonlinear effects are investigated. One is the effect of the static stiffness nonlinearity in changing the linear dynamic natural frequency and the other is the combination of nonlinear stiffness and nonlinear inertia effects in changing the nonlinear dynamic transient response due to a change in the initial release state of the system. A theoretical model has been developed for a cantilevered thin plate with a range of length to width ratio using beam theory and considering both stiffness and inertial nonlinearities in the model. Lagrange’s equation was used to deduce nonlinear inertia and stiffness matrices for a modal representation. Some insights into how these nonlinear components influence the beam response are presented. Measurements with both a hammer test and also a release test of cantilevered thin plates were done using different configurations and tip mass values. Results from static and dynamic analysis using the linear and the nonlinear theoretical model show good agreement between theory and experiment for natural frequencies and the amplitude displacements versus time.
more »
« less
Nonlinear Response of an Inextensible, Cantilevered Beam Subjected to a Nonconservative Follower Force
The dynamic stability of a cantilevered beam actuated by a nonconservative follower force has previously been studied for its interesting dynamical properties and its applications to engineering designs such as thrusters. However, most of the literature considers a linear model. A modest number of papers consider a nonlinear model. Here, a system of nonlinear equations is derived from a new energy approach for an inextensible cantilevered beam with a follower force acting upon it. The equations are solved in time, and the agreement is shown with published results for the critical force including the effects of damping (as determined by a linear model). This model readily allows the determination of both in-plane and out-of-plane deflections as well as the constraint force. With this novel transparency into the system dynamics, the nonlinear postcritical limit cycle oscillations (LCO) are studied including a concentration on the force which enforces the inextensibility constraint.
more »
« less
- PAR ID:
- 10185220
- Date Published:
- Journal Name:
- Journal of Computational and Nonlinear Dynamics
- Volume:
- 14
- Issue:
- 3
- ISSN:
- 1555-1415
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Recent equations of motion for the large deflections of a cantilevered elastic beam are analyzed. In the traditional theory of beam (and plate) large deflections, nonlinear restoring forces are due to the effect of stretching on bending; for an inextensible cantilever, the enforcement of arc-length preservation leads to quasilinear stiffness effects and inertial effects that are both nonlinear and nonlocal. For this model, smooth solutions are constructed via a spectral Galerkin approach. Additional compactness is needed to pass to the limit, and this is obtained through a complex procession of higher energy estimates. Uniqueness is obtained through a non-trivial decomposition of the nonlinearity. The confounding effects of nonlinear inertia are overcome via the addition of structural (Kelvin–Voigt) damping to the equations of motion. Local well-posedness of smooth solutions is shown first in the absence of nonlinear inertial effects, and then shown with these inertial effects present, taking into account structural damping. With damping in force, global-in-time, strong well-posedness result is obtained by achieving exponential decay for small data.more » « less
-
The interaction of flexible structures with viscoelastic flows can result in very rich dynamics. In this paper, we present the results of the interactions between the flow of a viscoelastic polymer solution and a cantilevered beam in a confined microfluidic geometry. Cantilevered beams with varying length and flexibility were studied. With increasing flow rate and Weissenberg number, the flow transitioned from a fore-aft symmetric flow to a stable detached vortex upstream of the beam, to a time-dependent unstable vortex shedding. The shedding of the unstable vortex upstream of the beam imposed a time-dependent drag force on the cantilevered beam resulting in flow-induced beam oscillations. The oscillations of the flexible beam were classified into two distinct regimes: a regime with a clear single vortex shedding from upstream of the beam resulting in a sinusoidal beam oscillation pattern with the frequency of oscillation increasing monotonically with Weissenberg number, and a regime at high Weissenberg numbers characterized by 3D viscoelastic instabilities where the frequency of oscillations plateaued. The critical onset of the flow transitions, the mechanism of vortex shedding and the dynamics of the cantilevered beam response are presented in detail here as a function of beam flexibility and flow viscoelasticity.more » « less
-
Aeromechanics of highly flexible flapping wings is a complex nonlinear fluid–structure interaction problem and, therefore, cannot be analyzed using conventional linear aeroelasticity methods. This paper presents a standalone coupled aeroelastic framework for highly flexible flapping wings in hover for micro air vehicle (MAV) applications. The MAV-scale flapping wing structure is modeled using fully nonlinear beam and shell finite elements. A potential-flow-based unsteady aerodynamic model is then coupled with the structural model to generate the coupled aeroelastic framework. Both the structural and aerodynamic models are validated independently before coupling. Instantaneous lift force and wing deflection predictions from the coupled aeroelastic simulations are compared with the force and deflection measurements (using digital image correlation) obtained from in-house flapping wing experiments at both moderate (13 Hz) and high (20 Hz) flapping frequencies. Coupled trim analysis is then performed by simultaneously solving wing response equations and vehicle trim equations until trim controls, wing elastic response, inflow and circulation converge all together. The dependence of control inputs on weight and center of gravity (cg) location of the vehicle is studied for the hovering flight case.more » « less
-
The dynamics of incompressible fluid flows are governed by a non-normal linear dynamical system in feedback with a static energy-conserving nonlinearity. These dynamics can be altered using feedback control but verifying performance of a given control law can be challenging. The conventional approach is to perform a campaign of high-fidelity direct numerical simulations to assess performance over a wide range of parameters and disturbance scenarios. In this paper, we propose an alternative simulation-free approach for controller verification. The incompressible Navier-Stokes equations are modeled as a linear system in feedback with a static and quadratic nonlinearity. The energy conserving property of this nonlinearity can be expressed as a set of quadratic constraints on the system, which allows us to perform a nonlinear stability analysis of the fluid dynamics with minimal complexity. In addition, the Reynolds number variations only influence the linear dynamics in the Navier-Stokes equations. Therefore, the fluid flow can be modeled as a parameter-varying linear system (with Reynolds number as the parameter) in feedback with a quadratic nonlinearity. The quadratic constraint framework is used to determine the range of Reynolds numbers over which a given flow will be stable, without resorting to numerical simulations. We demonstrate the framework on a reduced-order model of plane Couette flow. We show that our proposed method allows us to determine the critical Reynolds number, largest initial disturbance, and a range of parameter variations over which a given controller will stabilize the nonlinear dynamics.more » « less