Inoculation with remnant prairie soils increased the growth of three native prairie legumes but not necessarily their associations with beneficial soil microbes
More Like this
-
Abstract Butterfly abundances are declining globally, with meta‐analysis showing a rate of −2% per year. Agriculture contributes to butterfly decline through habitat loss and degradation. Prairie strips—strips of farmland actively restored to native perennial vegetation—are a conservation practice with the potential to mitigate biodiversity loss, but their impact on butterfly biodiversity is not known.Working within a 30‐year‐old experiment that varied land use intensity, from natural areas to croplands (maize–soy–wheat rotation), we introduced prairie strips to less intensely managed crop treatments. Treatments included conservation land, biologically based (organic) row crops with prairie strips, reduced input row crops with prairie strips, no‐till row crops and conventional row crops. We measured butterfly abundance and richness: (1) within prairie strips and (2) across the gradient of land use intensity at the plot level.Butterfly abundance was higher within prairie strips than in all other treatments. Across the land use intensity gradient at the plot level, the conservation land treatment had the highest abundance, treatments with prairie strips had intermediate levels and no‐till and conventional treatments had the lowest abundances. Also across entire plots, butterfly richness increased as land use intensity decreased. Treatments with prairie strips, which also had reduced land use intensity, had distinct butterfly communities as they harboured several butterfly species that were not found in other row crop treatments.In addition to the known effects of prairie strips on ecosystem services including erosion control and increased water quality, prairie strips can increase biodiversity in multifunctional landscapes.more » « less
-
Abstract Climate change is expected to shift precipitation regimes in the North American Central Plains with likely impacts on ecosystem functioning. In tallgrass prairies, water and nitrogen (N) can co‐limit ecosystem processes, so changes in precipitation may have complex effects on carbon (C) and N cycling. Rates of N supply such as N mineralization and nitrification respond differently to short‐ and long‐term patterns in water availability, and previous climate patterns may exert legacy effects on current N cycling that could alter ecosystem sensitivity to current precipitation regimes. We used a long‐term precipitation manipulation at Konza Prairie (Kansas, USA) to assess how previous and current precipitation influence tallgrass prairie N cycling. Supplemental irrigation was applied across upland and lowland prairie for ∼25 years to reduce water deficits; in 2017, we reversed some of these treatments and added a reduced rainfall treatment across both historic rainfall regimes, allowing us to assess how previous climate and current rainfall patterns interact to shape N cycling. In lowland prairie, previous irrigation doubled N mineralization and nitrification rates the year following cessation of irrigation. Reduced microbial C:N ratio and lower relative investment in N‐acquiring enzymes in previously irrigated lowlands suggested that a wetter climate created a legacy of increased N availability for microbes. Internal plant N resorption increased under short‐term irrigation but recovered to ambient levels following previous irrigation. Together, these results suggest that a history of wetter conditions can create a legacy of accelerated N cycling, with consequences for both plant and microbial functioning.more » « less
An official website of the United States government

