skip to main content


Title: Arctic tidal current atlas
Abstract

Tidal and wind-driven near-inertial currents play a vital role in the changing Arctic climate and the marine ecosystems. We compiled 429 available moored current observations taken over the last two decades throughout the Arctic to assemble a pan-Arctic atlas of tidal band currents. The atlas contains different tidal current products designed for the analysis of tidal parameters from monthly to inter-annual time scales. On shorter time scales, wind-driven inertial currents cannot be analytically separated from semidiurnal tidal constituents. Thus, we include 10–30 h band-pass filtered currents, which include all semidiurnal and diurnal tidal constituents as well as wind-driven inertial currents for the analysis of high-frequency variability of ocean dynamics. This allows for a wide range of possible uses, including local case studies of baroclinic tidal currents, assessment of long-term trends in tidal band kinetic energy and Arctic-wide validation of ocean circulation models. This atlas may also be a valuable tool for resource management and industrial applications such as fisheries, navigation and offshore construction.

 
more » « less
Award ID(s):
1708424
NSF-PAR ID:
10185396
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
7
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A 15‐year (2004–2018) record of mooring observations from the upper 50 m of the ocean in the eastern Eurasian Basin reveals increased current speeds and vertical shear, associated with an increasing coupling between wind, ice, and the upper ocean over 2004–2018, particularly in summer. Substantial increases in current speeds and shears in the upper 50 m are dominated by a two times amplification of currents in the semidiurnal band, which includes tides and wind‐forced near‐inertial oscillations. For the first time the strengthened upper ocean currents and shear are observed to coincide with weakening stratification. This coupling links the Atlantic Water heat to the sea ice, a consequence of which would be reducing regional sea ice volume. These results point to a new positive feedback mechanism in which reduced sea ice extent facilitates more energetic inertial oscillations and associated upper‐ocean shear, thus leading to enhanced ventilation of the Atlantic Water.

     
    more » « less
  2. Abstract

    Enhanced diapycnal mixing induced by the near-bottom breaking of internal waves is an essential component of the lower meridional overturning circulation. Despite its crucial role in the ocean circulation, tidally driven internal wave breaking is challenging to observe due to its inherently short spatial and temporal scales. We present detailed moored and shipboard observations that resolve the spatiotemporal variability of the tidal response over a small-scale bump embedded in the continental slope of Tasmania. Cross-shore tidal currents drive a nonlinear trapped response over the steep bottom around the bump. The observations are roughly consistent with two-dimensional high-mode tidal lee-wave theory. However, the alongshore tidal velocities are large, suggesting that the alongshore bathymetric variability modulates the tidal response driven by the cross-shore tidal flow. The semidiurnal tide and energy dissipation rate are correlated at subtidal time scales, but with complex temporal variability. Energy dissipation from a simple scattering model shows that the elevated near-bottom turbulence can be sustained by the impinging mode-1 internal tide, where the dissipation over the bump isO(1%) of the incident depth-integrated energy flux. Despite this small fraction, tidal dissipation is enhanced over the bump due to steep topography at a horizontal scale ofO(1) km and may locally drive significant diapycnal mixing.

    Significance Statement

    Near-bottom turbulent mixing is a key element of the global abyssal circulation. We present observations of the spatiotemporal variability of tidally driven turbulent processes over a small-scale topographic bump off Tasmania. The semidiurnal tide generates large-amplitude transient lee waves and hydraulic jumps that are unstable and dissipate the tidal energy. These processes are consistent with the scattering of the incident low-mode internal tide on the continental slope of Tasmania. Despite elevated turbulence over the bump, near-bottom energy dissipation is small relative to the incident wave energy flux.

     
    more » « less
  3. Abstract

    The geographical variability, frequency content, and vertical structure of near‐surface oceanic kinetic energy (KE) are important for air‐sea interaction, marine ecosystems, operational oceanography, pollutant tracking, and interpreting remotely sensed velocity measurements. Here, KE in high‐resolution global simulations (HYbrid Coordinate Ocean Model; HYCOM, and Massachusetts Institute of Technology general circulation model; MITgcm), at the sea surface (0 m) and at 15 m, are compared with KE from undrogued and drogued surface drifters, respectively. Global maps and zonal averages are computed for low‐frequency (<0.5 cpd), near‐inertial, diurnal, and semidiurnal bands. Both models exhibit low‐frequency equatorial KE that is low relative to drifter values. HYCOM near‐inertial KE is higher than in MITgcm, and closer to drifter values, probably due to more frequently updated atmospheric forcing. HYCOM semidiurnal KE is lower than in MITgcm, and closer to drifter values, likely due to inclusion of a parameterized topographic internal wave drag. A concurrent tidal harmonic analysis in the diurnal band demonstrates that much of the diurnal flow is nontidal. We compute simple proxies of near‐surface vertical structure—the ratio 0 m KE/(0 m KE + 15 m KE) in model outputs, and the ratio undrogued KE/(undrogued KE + drogued KE) in drifter observations. Over most latitudes and frequency bands, model ratios track the drifter ratios to within error bars. Values of this ratio demonstrate significant vertical structure in all frequency bands except the semidiurnal band. Latitudinal dependence in the ratio is greatest in diurnal and low‐frequency bands.

     
    more » « less
  4. Analysis of the time-dependent behavior of the buoyant plume rising above Grotto Vent (Main Endeavour Field, Juan de Fuca Ridge) as imaged by the Cabled Observatory Vent Imaging Sonar (COVIS) between September 2010 and October of 2015 captures long term time-dependent changes in the direction of background bottom currents independent of broader oceanographic processes, indicating a systematic evolution in vent output along the Endeavour Segment of the Juan de Fuca Ridge. The behavior of buoyant plumes can be quantified by describing the volume, velocity, and orientation of the effluent relative to the seafloor, which are a convolved expression of hydrothermal flux from the seafloor and ocean bottom currents in the vicinity of the hydrothermal vent. We looked at the azimuth and inclination of the Grotto plume, which was captured in three-dimensional acoustic images by the COVIS system, at 3-h intervals during October 2010 and between October 2011 and December 2014. The distribution of plume azimuths shifts from bimodal NW and SW to SE in 2010, 2011, and 2012 to single mode NW in 2013 and 2014. Modeling of the distribution of azimuths for each year with a bimodal Gaussian indicates that the prominence of southward bottom currents decreased systematically between 2010 and 2014. Spectral analysis of the azimuthal data showed a strong semi-diurnal peak, a weak or missing diurnal peak, and some energy in the sub-inertial and weather bands. This suggests the dominant current generating processes are either not periodic (such as the entrainment fields generated by the hydrothermal plumes themselves) or are related to tidal processes. This prompted an investigation into the broader oceanographic current patterns. The surface wind patterns in buoy data at two sites in the Northeast Pacific and the incidence of sea-surface height changes related to mesoscale eddies show little systematic change over this time-period. The limited bottom current data for the Main Endeavour Field and other parts of the Endeavour Segment neither confirm nor refute our observation of a change in the bottom currents. We hypothesize that changes in venting either within the Main Endeavour Field or along the Endeavour Segment have resulted in the changes in background currents. Previous numerical simulations (Thomson et al., J. Geophys. Res., 2009, 114 (C9), C09020) showed that background bottom currents were more likely to be controlled by the local (segment-scale) venting than by outside ocean circulation or atmospheric patterns. 
    more » « less
  5. Abstract

    Observations of sea ice and the upper ocean from three moorings in the Beaufort Sea quantify atmosphere–ice–ocean momentum transfer, with a particular focus on the inertial-frequency response. Seasonal variations in the strength of mixed layer (ML) inertial oscillations suggest that sea ice damps momentum transfer from the wind to the ocean, such that the oscillation strength is minimal under sea ice cover. In contrast, the net Ekman transport is unimpacted by the presence of sea ice. The mooring measurements are interpreted with a simplified one-dimensional ice–ocean coupled “slab” model. The model results provide insight into the drivers of the inertial seasonality: namely, that a combination of both sea ice internal stress and ocean ML depth contribute to the seasonal variability of inertial surface currents and inertial sea ice drift, while under-ice roughness does not. Furthermore, the importance of internal stress in damping inertial oscillations is different at each mooring, with a minimal influence at the southernmost mooring (within the seasonal ice zone) and more influence at the northernmost mooring. As the Arctic shifts to a more seasonal sea ice regime, changes in sea ice cover and sea ice internal strength may impact inertial-band ice–ocean coupling and allow for an increase in wind forcing to the ocean.

     
    more » « less