- Award ID(s):
- 1816500
- NSF-PAR ID:
- 10185417
- Date Published:
- Journal Name:
- IEEE 27th International Conference on Network Protocols (ICNP)
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Understanding end-user video Quality of Experience (QoE) is important for Internet Service Providers (ISPs). Existing work presents mechanisms that use network measurement data to estimate video QoE. Most of these mechanisms assume access to packet-level traces, the most-detailed data available from the network. However, collecting packet-level traces can be challenging at a network-wide scale. Therefore, we ask: "Is it feasible to estimate video QoE with lightweight, readily-available, but coarse-grained network data?" We specifically consider data in the form of Transport Layer Security (TLS) transactions that can be collected using a standard proxy and present a machine learning-based methodology to estimate QoE. Our evaluation with three popular streaming services shows that the estimation accuracy using TLS transactions is high (up to 72%) with up to 85% recall in detecting low QoE (low video quality or high re-buffering) instances. Compared to packet traces, the estimation accuracy (recall) is 7% (9%) lower but has up to 60 times lower computation overhead.more » « less
-
Accessing high-quality video content can be challenging due to insufficient and unstable network bandwidth. Recent advances in neural enhancement have shown promising results in improving the quality of degraded videos through deep learning. Neural-Enhanced Streaming (NES) incorporates this new approach into video streaming, allowing users to download low-quality video segments and then enhance them to obtain high-quality content without violating the playback of the video stream. We introduce BONES, an NES control algorithm that jointly manages the network and computational resources to maximize the quality of experience (QoE) of the user. BONES formulates NES as a Lyapunov optimization problem and solves it in an online manner with near-optimal performance, making it the first NES algorithm to provide a theoretical performance guarantee. Comprehensive experimental results indicate that BONES increases QoE by 5% to 20% over state-of-the-art algorithms with minimal overhead. Our code is available at https://github.com/UMass-LIDS/bones.
-
Emerging multimedia applications often use a wireless LAN (Wi-Fi) infrastructure to stream content. These Wi-Fi deployments vary vastly in terms of their system configurations. In this paper, we take a step toward characterizing the Quality of Experience (QoE) of volumetric video streaming over an enterprise-grade Wi-Fi network to: (i) understand the impact of Wi-Fi control parameters on user QoE, (ii) analyze the relation between Quality of Service (QoS) metrics of Wi-Fi networks and application QoE, and (iii) compare the QoE of volumetric video streaming to traditional 2D video applications. We find that Wi-Fi configuration parameters such as channel width, radio interface, access category, and priority queues are important for optimizing Wi-Fi networks for streaming immersive videos.more » « less
-
While recent work explored streaming volumetric content on-demand, there is little effort on live volumetric video streaming that bears the potential of bringing more exciting applications than its on-demand counterpart. To fill this critical gap, in this paper, we propose MetaStream, which is, to the best of our knowledge, the first practical live volumetric content capture, creation, delivery, and rendering system for immersive applications such as virtual, augmented, and mixed reality. To address the key challenge of the stringent latency requirement for processing and streaming a huge amount of 3D data, MetaStream integrates several innovations into a holistic system, including dynamic camera calibration, edge-assisted object segmentation, cross-camera redundant point removal, and foveated volumetric content rendering. We implement a prototype of MetaStream using commodity devices and extensively evaluate its performance. Our results demonstrate that MetaStream achieves low-latency live volumetric video streaming at close to 30 frames per second on WiFi networks. Compared to state-of-the-art systems, MetaStream reduces end-to-end latency by up to 31.7% while improving visual quality by up to 12.5%.more » « less
-
With live video streaming becoming accessible in various applications on all client platforms, it is imperative to create a seamless and efficient distribution system that is flexible enough to choose from multiple Internet architectures best suited for video streaming (live, on-demand, AR). In this paper, we highlight the benefits of such a hybrid system for live video streaming as well as present a detailed analysis with the goal to provide a high quality of experience (QoE) for the viewer. For our hybrid architecture, video streaming is supported simultaneously over TCP/IP and Named Data Networking (NDN)-based architecture via operating system and networking virtualization techniques to design a flexible system that utilizes the benefits of these varying Internet architectures. Also, to relieve users from the burden of installing a new protocol stack (in the case of NDN) on their devices, we developed a lightweight solution in the form of a container that includes the network stack as well as the streaming application. At the client, the required Internet architecture (TCP/IP versus NDN) can be selected in a transparent and adaptive manner. Based on a prototype, we have designed and implemented maintaining efficient use of network resources, we demonstrate that in the case of live streaming, NDN achieves better QoE per client than IP and can also utilize higher than allocated bandwidth through in-network caching. Even without caching, as opposed to IP-only, our hybrid setup achieves better average bitrate and better perceived visual quality (computed via VMAF metric) over live video streaming services. Furthermore, we present detailed analysis on ways adaptive video streaming with NDN can be further improved with respect to QoE.more » « less