skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding the Impact of Wi-Fi Configuration on Volumetric Video Streaming Applications
Emerging multimedia applications often use a wireless LAN (Wi-Fi) infrastructure to stream content. These Wi-Fi deployments vary vastly in terms of their system configurations. In this paper, we take a step toward characterizing the Quality of Experience (QoE) of volumetric video streaming over an enterprise-grade Wi-Fi network to: (i) understand the impact of Wi-Fi control parameters on user QoE, (ii) analyze the relation between Quality of Service (QoS) metrics of Wi-Fi networks and application QoE, and (iii) compare the QoE of volumetric video streaming to traditional 2D video applications. We find that Wi-Fi configuration parameters such as channel width, radio interface, access category, and priority queues are important for optimizing Wi-Fi networks for streaming immersive videos.  more » « less
Award ID(s):
2212200
PAR ID:
10516002
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
EMS '23: Proceedings of the 2023 Workshop on Emerging Multimedia Systems
ISBN:
9798400703034
Page Range / eLocation ID:
41 to 47
Format(s):
Medium: X
Location:
New York NY USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Wi-Fi is an integral part of today's Internet infrastructure, enabling a diverse range of applications and services. Prior approaches to Wi-Fi resource allocation optimized Quality of Service (QoS) metrics, which often do not accurately reflect the user's Quality of Experience (QoE). To address the gap between QoS and QoE, we introduce Maestro, an adaptive method that formulates the Wi-Fi resource allocation problem as a partially observable Markov decision process (PO-MDP) to maximize the overall system QoE and QoE fairness. Maestro estimates QoE without using any application or client data; instead, it treats them as black boxes and leverages temporal dependencies in network telemetry data. Maestro dynamically adjusts policies to handle different classes of applications and variable network conditions. Additionally, Maestro uses a simulation environment for practical training. We evaluate Maestro in an enterprise-level Wi-Fi testbed with a variety of applications, and find that Maestro achieves up to 25× and 78% improvement in QoE and fairness, respectively, compared to the widely-deployed Wi-Fi Multimedia (WMM) policy. Compared to the state-of-the-art learning approach QFlow, Maestro increases QoE by up to 69%. Unlike QFlow which requires modifications to clients, we demonstrate that Maestro improves QoE of popular over-the-top services with unseen traffic without control over clients or servers. 
    more » « less
  2. The increasing popularity of video streaming and conferencing services have altered the nature of Internet traffic. In this paper, we take a first step toward quantifying the impact of this changing nature of traffic on the Quality of Experience (QoE) of popular video streaming and conferencing applications. We first analyze the traffic characteristics of these applications and of backbone links, and show how simple multipath routing may adversely impact application QoE. To mitigate this problem, we propose a new routing path selection approach, inspired by the TCP timeout computation algorithm, that uses both the average and variation of path load. Preliminary results show that this approach improves application QoE by on average 14% and packet latency by 11% for video streaming and conferencing applications, respectively. 
    more » « less
  3. Adaptive bitrate (ABR) algorithms aim to make optimal bitrate decisions in dynamically changing network conditions to ensure a high quality of experience (QoE) for the users during video streaming. However, most of the existing ABRs share the limitations of predefined rules and incorrect assumptions about streaming parameters. They also come short to consider the perceived quality in their QoE model, target higher bitrates regardless, and ignore the corresponding energy consumption. This joint approach results in additional energy consumption and becomes a burden, especially for mobile device users. This paper proposes GreenABR, a new deep reinforcement learning-based ABR scheme that optimizes the energy consumption during video streaming without sacrificing the user QoE. GreenABR employs a standard perceived quality metric, VMAF, and real power measurements collected through a streaming application. GreenABR's deep reinforcement learning model makes no assumptions about the streaming environment and learns how to adapt to the dynamically changing conditions in a wide range of real network scenarios. GreenABR outperforms the existing state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 60% in data consumption while achieving up to 22% more perceptual QoE due to up to 84% less rebuffering time and near-zero capacity violations. 
    more » « less
  4. Adaptive bitrate (ABR) algorithms play a critical role in video streaming by making optimal bitrate decisions in dynamically changing network conditions to provide a high quality of experience (QoE) for users. However, most existing ABRs suffer from limitations such as predefined rules and incorrect assumptions about streaming parameters. They often prioritize higher bitrates and ignore the corresponding energy footprint, resulting in increased energy consumption, especially for mobile device users. Additionally, most ABR algorithms do not consider perceived quality, leading to suboptimal user experience. This article proposes a novel ABR scheme called GreenABR+, which utilizes deep reinforcement learning to optimize energy consumption during video streaming while maintaining high user QoE. Unlike existing rule-based ABR algorithms, GreenABR+ makes no assumptions about video settings or the streaming environment. GreenABR+ model works on different video representation sets and can adapt to dynamically changing conditions in a wide range of network scenarios. Our experiments demonstrate that GreenABR+ outperforms state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 57% in data consumption while providing up to 25% more perceptual QoE due to up to 87% less rebuffering time and near-zero capacity violations. The generalization and dynamic adaptability make GreenABR+ a flexible solution for energy-efficient ABR optimization. 
    more » « less
  5. null (Ed.)
    This paper presents a Brownian-approximation framework to optimize the quality of experience (QoE) for real-time video streaming in wireless networks. In real-time video streaming, one major challenge is to tackle the natural tension between the two most critical QoE metrics: playback latency and video interruption. To study this trade-off, we first propose an analytical model that precisely captures all aspects of the playback process of a real-time video stream, including playback latency, video interruptions, and packet dropping. Built on this model, we show that the playback process of a real-time video can be approximated by a two-sided reflected Brownian motion. Through such Brownian approximation, we are able to study the fundamental limits of the two QoE metrics and characterize a necessary and sufficient condition for a set of QoE performance requirements to be feasible. We propose a scheduling policy that satisfies any feasible set of QoE performance requirements and then obtain simple rules on the trade-off between playback latency and the video interrupt rates, in both heavy-traffic and under-loaded regimes. Finally, simulation results verify the accuracy of the proposed approximation and show that the proposed policy outperforms other popular baseline policies. 
    more » « less