skip to main content


Title: Out-of-school time STEM program: Students’ attitudes toward and career interests in mathematics and science
Internationally, out-of-school time (OST) science, technology, engineering, and mathematics (STEM) programs abound. However, rigorous evidence of their impacts on student outcomes is scarce. This study evaluated the relationships between OST STEM program participation and student motivational factors in math and science by analyzing survey and administrative data of 1.017 middle school students who participated in the seven-week, STEM-focused Prefreshman Engineering Program (PREP) in San Antonio, Texas, from 2015 to 2017. Multiple regression results indicated that the PREP participation was positively associated with students’ attitudes toward math and interests in math-related careers, whereas the effects on students’ attitudes toward science and career interests in science were negligible. No evidence was found to suggest that the associations between PREP participation and student motivational factors in math and science differed by gender, race/ethnicity, or socioeconomic status.  more » « less
Award ID(s):
1749275
NSF-PAR ID:
10185555
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Journal of Evaluation and Research in Education (IJERE)
Volume:
8
Issue:
2
ISSN:
2252-8822
Page Range / eLocation ID:
356; 362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine to improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170). 
    more » « less
  2. Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine to improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170). 
    more » « less
  3. There is little research or understanding of curricular differences between two- and four-year programs, career development of engineering technology (ET) students, and professional preparation for ET early career professionals [1]. Yet, ET credentials (including certificates, two-, and four-year degrees) represent over half of all engineering credentials awarded in the U.S [2]. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. This research study focuses on how career orientations affect engineering formation of ET students educated at two-year colleges. The theoretical framework guiding this study is Social Cognitive Career Theory (SCCT). SCCT is a theory which situates attitudes, interests, and experiences and links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes [3]. Student knowledge of attitudes toward and motivation to pursue STEM and engineering education can impact academic performance and indicate future career interest and participation in the STEM workforce [4]. This knowledge may be measured through career orientations or career anchors. A career anchor is a combination of self-concept characteristics which includes talents, skills, abilities, motives, needs, attitudes, and values. Career anchors can develop over time and aid in shaping personal and career identity [6]. The purpose of this quantitative research study is to identify dimensions of career orientations and anchors at various educational stages to map to ET career pathways. The research question this study aims to answer is: For students educated in two-year college ET programs, how do the different dimensions of career orientations, at various phases of professional preparation, impact experiences and development of professional profiles and pathways? The participants (n=308) in this study represent three different groups: (1) students in engineering technology related programs from a medium rural-serving technical college (n=136), (2) students in engineering technology related programs from a large urban-serving technical college (n=52), and (3) engineering students at a medium Research 1 university who have transferred from a two-year college (n=120). All participants completed Schein’s Career Anchor Inventory [5]. This instrument contains 40 six-point Likert-scale items with eight subscales which correlate to the eight different career anchors. Additional demographic questions were also included. The data analysis includes graphical displays for data visualization and exploration, descriptive statistics for summarizing trends in the sample data, and then inferential statistics for determining statistical significance. This analysis examines career anchor results across groups by institution, major, demographics, types of educational experiences, types of work experiences, and career influences. This cross-group analysis aids in the development of profiles of values, talents, abilities, and motives to support customized career development tailored specifically for ET students. These findings contribute research to a gap in ET and two-year college engineering education research. Practical implications include use of findings to create career pathways mapped to career anchors, integration of career development tools into two-year college curricula and programs, greater support for career counselors, and creation of alternate and more diverse pathways into engineering. Words: 489 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] The Integrated Postsecondary Education Data System, (IPEDS). (2014). Data on engineering technology degrees. [3] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [4] Unfried, A., Faber, M., Stanhope, D.S., Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineeirng, and math (S-STEM). Journal of Psychoeducational Assessment, 33(7), 622-639. [5] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [6] Schein, E.H., & Van Maanen, J. (2013). Career Anchors, 4th ed. San Francisco: Wiley. 
    more » « less
  4. Background:

    The United States continues to invest considerable resources into developing the next generation of science, technology, engineering, and mathematics (STEM) talent. Efforts to shore up interest in pursuing STEM careers span decades and have increasingly focused on boosting interest among diverse student populations. Policymakers have called for engaging students in a greater STEM ecology of support that extends beyond the traditional classroom environment to increase student STEM career interest. Yet, few robust studies exist exploring the efficacy of many programmatic efforts and initiatives outside the regular curriculum intended to foster STEM interest. To maximize STEM education investments, promote wise policies, and help achieve the aim of creating STEM learning ecosystems that benefit diverse student populations and meet the nation’s STEM goals, it is crucial to examine the effectiveness of these kinds of STEM education initiatives in promoting STEM career aspirations.

    Purpose:

    The purpose of this quasi-experimental study was to examine the impact of one popular, yet understudied, STEM education initiative on students’ STEM career aspirations: participation in a university- or college-run STEM club or program activity (CPA) during high school. Specifically, we studied whether participation in a college-run STEM CPA at a postsecondary institution during high school was related to college-going students’ STEM career aspirations, and we examined whether that relationship differed depending on student characteristics and prior STEM interests.

    Research Design:

    We conducted a quasi-experimental investigation to explore the impact of participation in university- or college-run STEM CPAs on college-going students’ STEM career aspirations. We administered a retrospective cohort survey to students at 27 colleges and universities nationwide resulting in a sample of 15,847 respondents. An inverse probability of treatment weighted logistic regression model with a robust set of controls was computed to estimate the odds of expressing STEM career aspirations among those who participated in college-run STEM CPAs compared with the odds expressed among students who did not participate. Our weighting accounted for self-selection effects.

    Results:

    Quasi-experimental modeling results indicated that participation in university- or college-run STEM CPAs had a significant impact on the odds that college-going students would express STEM career aspirations relative to students who did not participate. The odds of expressing interest in a STEM career among participants in STEM CPAs were 1.49 times those of the control group. Robustness checks confirmed our results. The result held true for students whether or not they expressed interest in STEM careers prior to participation in STEM CPAs, and it held true across a diverse range of student characteristics (e.g., race, parental education, gender, standardized test scores, and family/school encouragement).

    Conclusions:

    Results suggest that university- and college-run STEM CPAs play an important role in the STEM education ecology, serving the national goal of expanding the pool of college-going students who aspire to STEM careers. Moreover, results showed that participation in university- and college-run STEM CPAs during high school is equally effective across diverse student characteristics. Policymakers, educators, and those charged with making investment decisions in STEM education should seriously consider university- and college-run STEM CPAs as a promising vehicle to promote diverse students’ STEM career aspirations in the broader STEM learning ecosystem and as an important complement to other STEM learning environments.

     
    more » « less
  5. The science, technology, engineering, and math (STEM) fields have a well-documented racialized and gendered participation gap between males, particularly white males, and women of color (WOC). Through a Critical Race Feminist lens, this qualitative research study uses life- story narrative analysis to understand the experiences of eleven WOC who participated in an urban STEM-focused out-of-school time (OST) program. Data analysis showed students story their experiences around three overarching themes: (1) Experiencing New Opportunities; (2) Cultivating Supportive Relationships; and (3) Expanding STEM Career Possibilities. Findings indicate that an urban STEM-focused OST program can activate an ecosystem of opportunities and support which can empower WOC to step out of their socialized comfort zones and step up to more advanced academic and career paths. Participant narratives demonstrate how their experiences in a particular urban STEM OST program opened doors and encouraged pathways otherwise historically made inaccessible to WOC in STEM fields. 
    more » « less