STEM education is often disconnected from innovation and design, where students self-identify as solely scientists, artists, or technophiles, but rarely see the connection between the disciplines. The inclusion of arts (A) in STEM education (STEAM) offers an educational approach where students see how subjects are integrated through learning experiences that apply to everyday, developing personal connections and becoming motivated learners who understand how skills from each subject are needed for future careers. This project addresses both the disconnect between science, design, and technology and how high school students can benefit from innovative learning experiences in plant science that integrate these disciplines while gaining invaluable skills for future STEM careers. We used the Science-Art-Design-Technology (SADT) pedagogical approach, characterized by its project-based learning that relies on student teamwork and facilitation by educators. This approach was applied through a STEAM educational 3D plant module where teams: 1) investigated plants under research at a plant science research center, 2) designed and created 3D models of those plants, 3) experienced the application of 3D modeling in augmented and virtual reality platforms, and 4) disseminated project results. We used a mixed-method approach using qualitative and quantitative research methods to assess the impact of the 3D modeling module on students’ understanding of the intersection of art and design with science, learning and skills gains, and interests in STEAM subjects and careers. A total of 160 students from eight educational institutions (schools and informal programs) implemented the module. Student reflection questions revealed that students see art and design playing a role in science mainly by facilitating communication and further understanding and fostering new ideas. They also see science influencing art and design through the artistic creation process. The students acknowledged learning STEAM content and applications associated with plant science, 3D modeling, and augmented and virtual reality. They also acknowledged gaining research skills and soft skills such as collaboration and communication. Students also increased their interest in STEAM subjects and careers, particularly associated with plant science. The SADT approach, exemplified by the 3D plant module, effectively integrates science, art, design, and technology, enhancing student literacy in these fields, and providing students with essential 21st century competencies. The module's flexibility and experiential learning opportunities benefit students and educators, promoting interdisciplinary learning and interest in STEAM subjects and careers. This innovative approach is a valuable tool for educators, inspiring new ways of teaching and learning in STEAM education.
more »
« less
STEM Outside of School: a Meta-Analysis of the Effects of Informal Science Education on Students' Interests and Attitudes for STEM
Abstract This meta-analysis explores the impact of informal science education experiences (such as after-school programs, enrichment activities, etc.) on students' attitudes towards, and interest in, STEM disciplines (Science, Technology, Engineering, and Mathematics). The research addresses two primary questions: (1) What is the overall effect size of informal science learning experiences on students' attitudes towards and interest in STEM? (2) How do various moderating factors (e.g., types of informal learning experience, student grade level, academic subjects, etc.) impact student attitudes and interests in STEM? The studies included in this analysis were conducted within the United States in K-12 educational settings, over a span of thirty years (1992–2022). The findings indicate a positive association between informal science education programs and student interest in STEM. Moreover, the variability in these effects is contingent upon several moderating factors, including the nature of the informal science program, student grade level, STEM subjects, publication type, and publication year. Summarized effects of informal science education on STEM interest are delineated, and the implications for research, pedagogy, and practice are discussed.
more »
« less
- Award ID(s):
- 1811265
- PAR ID:
- 10542720
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- International Journal of Science and Mathematics Education
- Volume:
- 23
- Issue:
- 4
- ISSN:
- 1571-0068
- Format(s):
- Medium: X Size: p. 1153-1181
- Size(s):
- p. 1153-1181
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An interdisciplinary team of faculty, staff, and students at Illinois State University is partnering with the Chicago Public Schools district (CPS) and non-profit Community-Based Organizations in four Chicago neighborhoods to create a new after-school STEM program known as SUPERCHARGE. Funded by NSF, the primary purpose of the project is to increase the number of students from underrepresented groups who pursue STEM fields at the postsecondary level. Faculty from STEM and STEM education program areas as well as the National Center for Urban Education at Illinois State University comprise the leadership team for the project. Guided by the National Research Council’s STEM Learning Ecosystem Model, SUPERCHARGE will contribute to the disruption of inequities that hinder access to STEM career pipelines for participants by serving as a bridge between informal high school academic experiences, STEM-related higher education programs, and STEM-related career pathways. Research to determine the impact of the program on students' interest, understanding, and self-efficacy towards STEM careers, as well as teachers and undergraduate students’ understanding of promoting change, will also be conducted. The Partnerships in Education and Resilience (PEAR) Common Instrument for students and teachers, and interviews with stakeholders are being used to support data gathering and program feedback. These data sources will be used for program assessment and future research.more » « less
-
Internationally, out-of-school time (OST) science, technology, engineering, and mathematics (STEM) programs abound. However, rigorous evidence of their impacts on student outcomes is scarce. This study evaluated the relationships between OST STEM program participation and student motivational factors in math and science by analyzing survey and administrative data of 1.017 middle school students who participated in the seven-week, STEM-focused Prefreshman Engineering Program (PREP) in San Antonio, Texas, from 2015 to 2017. Multiple regression results indicated that the PREP participation was positively associated with students’ attitudes toward math and interests in math-related careers, whereas the effects on students’ attitudes toward science and career interests in science were negligible. No evidence was found to suggest that the associations between PREP participation and student motivational factors in math and science differed by gender, race/ethnicity, or socioeconomic status.more » « less
-
Abstract Consequential STEM experiences in informal settings can address issues of equity by fully engaging historically marginalized high school students in complex socio-scientific issues. However, inclusive and effective programs are in high demand, and there is little research on what specific aspects, context, and timeframes are most important when scaling these experiences. Using a mixed method approach, this study demonstrates that students make significant gains, in the short and long term, through in-person and remote informal programs ranging between 22-h and 320-h. Progress across STEM learning constructs is attributed to authentic research experiences, students’ connections to STEM professionals, direct hands-on participation in projects, and group work. Relative to formal education settings, research-based informal STEM programs can be implemented with minimal resources, can maintain effectiveness while scaling, and work towards addressing the societal challenge of improving STEM learning and outcomes for high school students from historically marginalized communities.more » « less
-
Usable STEM knowledge for tomorrow's STEM problems More universities and education programs need more STEM knowledge in formal and informal settings to guide learners in applying STEM learning to the creation of solutions. To address this challenge, Nancy Butler Songer, the dean of the College of Education at the University of Utah designed a learning approach, Solutioning, that guides youth to deepen science content through science and engineering practices. Creating a six-week curricular program, the learning approach provided opportunities for students to use engineering design to create and provide feedback on a trap design that would attract a local invasive insect that was harmful to their community. Research was conducted on studies to provide empirical evidence on student STEM knowledge and learning and their ability to define science and engineering. Research results indicate that even elementary-age students demonstrate significant improvement in their understanding of STEM arguments as evaluated with a pre-post assessment before and after implementing a six-week solutioning curricular program.more » « less