skip to main content

Title: Detection of Collaboration: Relationship Between Log and Speech-Based Classification
Research in the field of collaboration shows that students do not spontaneously collaborate with each other. A system that can measure collaboration in real time could be useful by, for example, helping the teacher locate a group requiring guidance. To address this challenge, my research focuses on building and comparing collaboration detectors for different types of classroom problem solving activities, such as card sorting and hand writing. I am also studying transfer: how collaboration detectors for one task can be used with a new task. Finally, we attempt to build a teachers dashboard that can describe reasoning behind the triggered alerts thereby helping the teachers with insights to aid the collaborative activity. Data for building such detectors were collected in the form of verbal interaction and user action logs from students’ tablets. Three qualitative levels of interactivity was distinguished: Collaboration, Cooperation and Asymmetric Contribution. Machine learning was used to induce a classifier that can assign a code for every episode based on the set of features. Our preliminary results indicate that machine learned classifiers were reliable.
Authors:
Award ID(s):
1840051
Publication Date:
NSF-PAR ID:
10185612
Journal Name:
Artificial Intelligence in Education, AIED 2019
Page Range or eLocation-ID:
327-331
Sponsoring Org:
National Science Foundation
More Like this
  1. A key strategy for bringing computer science (CS) education to all students is the integration of computational thinking (CT) into core curriculum in elementary school. But teachers want to know how they can do this on top of their existing priorities. In this paper, we describe how our research-practice partnership is working to motivate, prepare, and support an elementary school to integrate equitable and inclusive computer science into core curriculum. Data were collected from teachers at a K-5 school where 65% of students are Hispanic or Latinx, 46% are English Learners, and 65% are eligible for free or reduced lunch. Data included semi-structured interviews, educators’ written reflections, and observations of classroom implementation and professional development. The findings show how the school is building buy-in and capacity among teachers by using a coaching cycle led by a Teacher on Special Assignment. The cycle of preparation, implementation, and reflection demystifies CS by helping teachers design, test, and revise coherent lesson sequences that integrate CT into their lessons. Contrasting case studies are used to illustrate what teachers learned from the cycle, including the teachers’ reasons for the integration, adaptations they made to promote equity, what the teachers noticed about their students engaging inmore »CT, and their next steps. We discuss the strengths and the limitations of this approach to bringing CS for All.« less
  2. Collaboration is a 21st Century skill as well as an effective method for learning, so detection of collaboration is important for both assessment and instruction. Speech-based collaboration detection can be quite accurate but collecting the speech of students in classrooms can raise privacy issues. An alternative is to send only whether or not the student is speaking. That is, the speech signal is processed at the microphone by a voice activity detector before being transmitted to the collaboration detector. Because the transmitted signal is binary (1 = speaking, 0 = silence), this method mitigates privacy issues. However, it may harm the accuracy of collaboration detection. To find out how much harm is done, this study compared the relative effectiveness of collaboration detectors based either on the binary signal or high-quality audio. Pairs of students were asked to work together on solving complex math problems. Three qualitative levels of interactivity was distinguished: Interaction, Cooperation and Other. Human coders used richer data (several audio and video streams) to choose the code for each episode. Machine learning was used to induce a detector to assign a code for every episode based on the features. The binary-based collaboration detectors delivered only slightly less accuracymore »than collaboration detectors based on the high quality audio signal.« less
  3. Light microscopy provides a window into another world that is not visible to the unaided eye. Because of this and its importance in biological discoveries, the light microscope is an essential tool for scientific studies. It can also be used with a variety of easily obtained specimens to provide dramatic demonstrations of previously unknown features of common plants and animals. Thus, one way to interest young people in science is to start with an introduction to light microscopy. This is an especially effective strategy for individuals who attend less advantaged or under-resourced schools, as they may not have been previously exposed to scientific concepts in their classes. However, introducing light microscopy lessons in the classroom can be challenging because of the high cost of light microscopes, even those that are relatively basic, in addition to their usual large size. Efforts are underway by our laboratory in collaboration with the Biophysical Society (BPS) to introduce young people to light microscopy using small, easy-to-assemble wooden microscopes developed by Echo Laboratories. The microscopes are available online as low-cost kits ($10 each with shipping), each consisting of 19 parts printed onto an 81⁄2 x 11 inch sheet of light-weight wood (Fig. 1). After punchingmore »out the pieces, they can be assembled into a microscope with a moveable stage and a low-power lens, also provided in the kit (Fig. 2). Photos taken with a cell phone through the microscope lens can give magnifications of ~16-18x, or higher. At these magnifications, features of specimens that are not visible to the unaided eye can be easily observed, e.g., small hairs on the margins of leaves or lichens [1]. As a member of the BPS Education Committee, one of us (SAE) wrote a Lesson Plan on Light Microscopy specifically for use with the wooden microscopes. SAE was also able to obtain a gift of 500 wooden microscope kits for the BPS from Echo Laboratories and Chroma Technology Corp in 2016. The wooden microscope kits, together with the lesson plan, have provided the materials for our present outreach efforts. Rather than giving out the wooden microscope kits to individuals, the BPS asked the Education Committee to maximize the impact of the gift by distributing the microscopes with the Lesson Plan on Light Microscopy to teachers, e.g., through teachers’ workshops or outreach sessions. This strategy was devised to enable the Society to reach a larger number of young people than by giving the microscopes to individuals. The Education Committee first evaluated the microscopes as a tool to introduce students to scientific concepts by providing microscopes to a BPS member at the National University of Colombia who conducted a workshop on Sept 19-24, 2016 in Tumaco, Columbia. During the workshop, which involved 120 high school girls and 80 minority students, including Afro-Colombian and older students, the students built the wooden microscopes and examined specimens, and compared the microscopes to a conventional light microscope. Assembling the wooden microscopes was found to be a useful procedure that was similar to a scientific protocol, and encouraged young girls and older students to participate in science. This was especially promising in Colombia, where there are few women in science and little effort to increase women in STEM fields. Another area of outreach emerged recently when one of us, USP, an undergraduate student at Duke University, who was taught by SAE how to assemble the wooden microscopes and how to use the lesson plan, took three wooden microscopes on a visit to her family in Bangalore, India in summer 2018 [2]. There she organized and led three sessions in state run, under-resourced government schools, involving classes of ~25-40 students each. This was very successful – the students enjoyed learning about the microscopes and building them, and the science teachers were interested in expanding the sessions to other government schools. USP taught the teachers how to assemble and use the microscopes and gave the teachers the microscopes and lesson plan, which is also available to the public at the BPS web site. She also met with a founder of the organization, Whitefield Rising, which is working to improve teaching in government schools, and taught her and several volunteers how to assemble the microscopes and conduct the sessions. The Whitefield Rising members have been able to conduct nine further sessions in Bangalore over the past ~18 months (Fig. 3), using microscope kits provided to them by the BPS. USP has continued to work with members of the Whitefield Rising group during her summer and winter breaks on visits to Bangalore. Recently she has been working with another volunteer group that has expanded the outreach efforts to New Delhi. The light microscopy outreach that our laboratory is conducting in India in collaboration with the BPS is having a positive impact because we have been able to develop a partnership with volunteers in Bangalore and New Delhi. The overall goal is to enhance science education globally, especially in less advantaged schools, by providing a low-cost microscope that can be used to introduce students to scientific concepts.« less
  4. International collaborations for community colleges are important for students who will be competing for employment yet are often overlooked due to the perception that international means expensive. The International Education Initiative (IEI) provides opportunities for international collaboration among community college faculty and students. The IEI is a multi-tiered program that allows different levels of participation and cost for faculty and students through funding from the National Science Foundation Advanced Technological Education Program and the French Embassy in the United States. While the main focus is engineering and technology courses, partners have also included business and communications classes, creating a truly interdisciplinary program. Students participating in these programs can expect to have greater cross-cultural maturity and awareness of the wider world, increased confidence in finding future success in the global workforce, and increased ability to deploy 21st Century skills such as technology and teamwork. Faculty participating in the program can expect to have increased confidence and skills in faculty to support students in achieving 21st century skills; increased ability to co-teach and work effectively with and overseas partner, and more motivation and readiness to sustain overseas partnerships and help grow the international program. The Connecticut Collaborative Learning for International Capabilities andmore »Knowledge (CT CLICKs) provides the opportunity for students to receive a global experience as part of a course they are already taking. During the first year of the program, Faculty from Connecticut community colleges partnered with faculty from French Insitituts universitaires de technologie (IUTs), French equivalent of community colleges, to co-teach curriculum modules to their participating classes. The second year added the option of co-facilitating a project between the two classes. All teaching, assignments, and projects were completed through virtual platforms. Several travel opportunities have been provided for student and faculty participants. These have either been through the attendance of international technology bootcamps that were organized by the French Embassy or a partner IUT or through a travel program organized by the IEI. Both travel options include experiences that provide an overview of French engineering and technology education, industry, history, and culture. A faculty recruitment and preparation model has been created to continuously onboard new faculty for the IEI program. The model includes a program overview workshop, partner matching, and curriculum design workshop that all take place virtually. The CT CLICKs program has built steadily and quickly. The number of teachers participating grew from 6 to 29 in the first three years with more than 6 teachers repeating or developing new modules. A total of 334 students have participated in the CT CLICKs program since fall 2017. The number of Connecticut campuses grew from 1 to 8 and overseas partner campuses grew from 2 to 5. Participant survey data shows that the program is continuously improving in helping students gain a better worldview and how to collaborate cross-culturally and helping faculty incorporate international collaboration into their courses.« less
  5. International collaborations for community colleges are important for students who will be competing for employment yet are often overlooked due to the perception that international means expensive. The International Education Initiative (IEI) provides opportunities for international collaboration among community college faculty and students. The IEI is a multi-tiered program that allows different levels of participation and cost for faculty and students through funding from the National Science Foundation Advanced Technological Education Program and the French Embassy in the United States. While the main focus is engineering and technology courses, partners have also included business and communications classes, creating a truly interdisciplinary program. Students participating in these programs can expect to have greater cross-cultural maturity and awareness of the wider world, increased confidence in finding future success in the global workforce, and increased ability to deploy 21st Century skills such as technology and teamwork. Faculty participating in the program can expect to have increased confidence and skills in faculty to support students in achieving 21st century skills; increased ability to co-teach and work effectively with and overseas partner, and more motivation and readiness to sustain overseas partnerships and help grow the international program. The Connecticut Collaborative Learning for International Capabilities andmore »Knowledge (CT CLICKs) provides the opportunity for students to receive a global experience as part of a course they are already taking. During the first year of the program, Faculty from Connecticut community colleges partnered with faculty from French Insitituts universitaires de technologie (IUTs), French equivalent of community colleges, to co-teach curriculum modules to their participating classes. The second year added the option of co-facilitating a project between the two classes. All teaching, assignments, and projects were completed through virtual platforms. Several travel opportunities have been provided for student and faculty participants. These have either been through the attendance of international technology bootcamps that were organized by the French Embassy or a partner IUT or through a travel program organized by the IEI. Both travel options include experiences that provide an overview of French engineering and technology education, industry, history, and culture. A faculty recruitment and preparation model has been created to continuously onboard new faculty for the IEI program. The model includes a program overview workshop, partner matching, and curriculum design workshop that all take place virtually. The CT CLICKs program has built steadily and quickly. The number of teachers participating grew from 6 to 29 in the first three years with more than 6 teachers repeating or developing new modules. A total of 334 students have participated in the CT CLICKs program since fall 2017. The number of Connecticut campuses grew from 1 to 8 and overseas partner campuses grew from 2 to 5. Participant survey data shows that the program is continuously improving in helping students gain a better worldview and how to collaborate cross-culturally and helping faculty incorporate international collaboration into their courses.« less