skip to main content

Title: SAT-Hub: Smart and Accessible Transportation Hub for Assistive Navigation and Facility Management.
The goal of the proposed project is to transform a large transportation hub into a smart and accessible hub (SAT-Hub), with minimal infrastructure change. The societal need is significant, especially impactful for people in great need, such as those who are blind and visually impaired (BVI) or with Autism Spectrum Disorder (ASD), as well as those unfamiliar with metropolitan areas. With our inter-disciplinary background in urban systems, sensing, AI and data analytics, accessibility, and paratransit and assistive services, our solution is a hu-man-centric system approach that integrates facility modeling, mobile navigation, and user interface designs. We leverage several transportation facili-ties in the heart of New York City and throughout the State of New Jersey as testbeds for ensuring the relevance of the research and a smooth transition to real world applications.
Authors:
; ; ; ; ; ; ;
Award ID(s):
1827505 1737533
Publication Date:
NSF-PAR ID:
10185779
Journal Name:
Harvard CRCS Workshop on AI for Social Good
Sponsoring Org:
National Science Foundation
More Like this
  1. Rapid urbanization has posed significant burden on urban transportation infrastructures. In today's cities, both private and public transits have clear limitations to fulfill passengers' needs for quality of experience (QoE): Public transits operate along fixed routes with long wait time and total transit time; Private transits, such as taxis, private shuttles and ride-hailing services, provide point-to-point transits with high trip fare. In this paper, we propose CityLines, a transformative urban transit system, employing hybrid hub-and-spoke transit model with shared shuttles. Analogous to Airlines services, the proposed CityLines system routes urban trips among spokes through a few hubs or direct paths,more »with travel time as short as private transits and fare as low as public transits. CityLines allows both point-to-point connection to improve the passenger QoE, and hub-and-spoke connection to reduce the system operation cost. Our evaluation results show that CityLines framework can achieve both short travel time and high ride-sharing ratio.« less
  2. Rapid urbanization has posed significant burden on urban transportation infrastructures. In today's cities, both private and public transits have clear limitations to fulfill passengers' needs for quality of experience (QoE): Public transits operate along fixed routes with long wait time and total transit time; Private transits, such as taxis, private shuttles and ride-hailing services, provide point-to-point transits with high trip fare. In this paper, we propose CityLines, a transformative urban transit system, employing hybrid hub-and-spoke transit model with shared shuttles. Analogous to Airlines services, the proposed CityLines system routes urban trips among spokes through a few hubs or direct paths,more »with travel time as short as private transits and fare as low as public transits. CityLines allows both point-to-point connection to improve the passenger QoE, and hub-and-spoke connection to reduce the system operation cost. To evaluate the performance of CityLines, we conduct extensive data-driven experiments using one-month real-world trip demand data (from taxis, buses and subway trains) collected from Shenzhen, China. The results demonstrate that CityLines reduces 12.5%-44% average travel time, and aggregates 8.5%-32.6% more trips with ride-sharing over other implementation baselines.« less
  3. It has been evident that N6-methyladenosine (m6A)-modified long noncoding RNAs (m6A-lncRNAs) involves regulating tumorigenesis, invasion, and metastasis for various cancer types. In this study, we sought to pick computationally up a set of 13 hub m6A-lncRNAs in light of three state-of-the-art tools WGCNA, iWGCNA, and oCEM, and interrogated their prognostic values in brain low-grade gliomas (LGG). Of the 13 hub m6A-lncRNAs, we further detected three hub m6A-lncRNAs as independent prognostic risk factors, including HOXB-AS1, ELOA-AS1, and FLG-AS1 . Then, the m6ALncSig model was built based on these three hub m6A-lncRNAs. Patients with LGG next were divided into two groups, high-more »and low-risk, based on the median m6ALncSig score. As predicted, the high-risk group was more significantly related to mortality. The prognostic signature of m6ALncSig was validated using internal and external cohorts. In summary, our work introduces a high-confidence prognostic prediction signature and paves the way for using m6A-lncRNAs in the signature as new targets for treatment of LGG.« less
  4. Rapid advances in production systems’ models and technology continually challenge manufacturers preparing for the factories of the future. To address the complexity issues typically coupled with the improvements, we have developed a brain-inspired model for production systems, HUBCI. It is a virtual Hub for Collaborative Intelligence, receiving human instructions from a human-computer interface; and in turn, commanding robots via ROS. The purpose of HUB-CI is to manage diverse local information and real-time signals obtained from system agents (robots, humans, and warehouse components, e.g., carts, shelves, racks) and globally update real-time assignments and schedules for those agents. With Collaborative Control Theorymore »(CCT) we first develop the protocol for collaborative requirement planning for a HUB-CI, (CRP-H), through which we can synchronize the agents to work smoothly and execute rapidly changing tasks. This protocol is designed to answer: Which robot(s) should perform each human-assigned task, and when should this task be performed? The primary two phases of CRP-H, CRP-I (task assignment optimization) and CRP-II (agents schedule harmonization) are developed and validated for two test scenarios: a two-robot collaboration system with five tasks; and a two-robot-and-helper-robot collaboration system with 25 tasks. Simulation results indicate that under CRP-H, both operational cost and makespan of the production work are significantly reduced in the two scenarios.« less
  5. Today large amount of data is generated by cities. Many of the datasets are openly available and are contributed by different sectors, government bodies and institutions. The new data can affect our understanding of the issues faced by cities and can support evidence based policies. However usage of data is limited due to difficulty in assimilating data from different sources. Open datasets often lack uniform structure which limits its analysis using traditional database systems. In this paper we present Citadel, a data hub for cities. Citadel's goal is to support end to end knowledge discovery cyber-infrastructure for effective analysis andmore »policy support. Citadel is designed to ingest large amount of heterogeneous data and supports multiple use cases by encouraging data sharing in cities. Our poster presents the proposed features, architecture, implementation details and initial results.« less