skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Peekaboo: A Hub-Based Approach to Enable Transparency in Data Processing within Smart Homes
We present Peekaboo, a new privacy-sensitive architecture for smart homes that leverages an in-home hub to pre-process and minimize outgoing data in a structured and enforceable manner before sending it to external cloud servers. Peekaboo’s key innovations are (1) abstracting common data preprocessing functionality into a small and fixed set of chainable operators, and (2) requiring that developers explicitly declare desired data collection behaviors (e.g., data granularity, destinations, conditions) in an application manifest, which also specifies how the operators are chained together. Given a manifest, Peekaboo assembles and executes a pre-processing pipeline using operators pre-loaded on the hub. In doing so, developers can collect smart home data on a need-to-know basis; third-party auditors can verify data collection behaviors; and the hub itself can offer a number of centralized privacy features to users across apps and devices, without additional effort from app developers. We present the design and implementation of Peekaboo, along with an evaluation of its coverage of smart home scenarios, system performance, data minimization, and example built-in privacy features.  more » « less
Award ID(s):
1801472
PAR ID:
10399847
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2022 IEEE Symposium on Security and Privacy (SP)
Page Range / eLocation ID:
303 to 320
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Smart-home devices promise to make users’ lives more convenient. However, at the same time, such devices increase the possibility of breaching users’ privacy as they are tightly connected to the users’ daily lives and activities. To address privacy invasion through smart-home devices, we present ChatterHub. This novel approach accurately identifies smart-home devices’ activities with minimal monitoring of encrypted traffic in the home network. ChatterHub targets devices that can only connect to the Internet through a centralized smart-home hub (e.g., Samsung SmartThings) using Zigbee or Z-wave. Specifically, ChatterHub passively eavesdrops on encrypted network traffic from the hub and leverages machine learning techniques to classify events and states of smart-home devices. Using ChatterHub, an adversary can identify smart-home devices’ specific activities without prior knowledge of the target smart home (e.g., list of deployed devices, types of communication protocols). We evaluated the accuracy and efficiency of ChatterHub in three real-world smart-home environments, and the evaluation results show that an attacker can successfully disclose smart-home devices’ behaviors with over 88% F1 score. We further demonstrate that ChatterHub successfully recognizes privacy-sensitive activities, including open and close of a smart door lock and turn on and off of smart LED. Additionally, to mitigate the threats posed by ChatterHub, we introduce two approaches, packet padding and random sequence injection. These mitigation approaches can effectively prevent threats from ChatterHub with only 9.2MB of additional network traffic per day. 
    more » « less
  2. Typical Internet of Things (IoT) and smart home environments are composed of smart devices that are controlled and orchestrated by applications developed and run in the cloud. Correctness is important for these applications, since they control the home's physical security (i.e. door locks) and systems (i.e. HVAC). Unfortunately, many smart home applications and systems exhibit poor security characteristics and insufficient system support. Instead they force application developers to reason about a combination of complicated scenarios-asynchronous events and distributed devices. This paper demonstrates that existing cloud-based smart home platforms provide insufficient support for applications to correctly deal with concurrency and data consistency issues. These weaknesses expose platform vulnerabilities that affect system correctness and security (e.g. a smart lock erroneously unlocked). To address this, we present OKAPI, an application-level API that provides strict atomicity and event ordering. We evaluate our work using the Samsung SmartThings smart home devices, hub, and cloud infrastructure. In addition to identifying shortfalls of cloud-based smart home platforms, we propose design guidelines to make application developers oblivious of smart home platforms' consistency and concurrency intricacies. 
    more » « less
  3. Smart home technologies are making their way into families. Parents' and children's shared use of smart home technologies has received growing attention in CSCW and related research communities. Families and children are also frequently featured as target audiences in smart home product marketing. However, there is limited knowledge of how exactly children and family interactions are portrayed in smart home product marketing, and to what extent those portrayals align with the actual consideration of children and families in product features and resources for child safety and privacy. We conducted a content analysis of product websites and online resources of 102 smart home products, as these materials constitute a main marketing channel and information source about products for consumers. We found that despite featuring children in smart home marketing, most analyzed product websites did not mention child safety features and lacked sufficient information on how children's data is collected and used. Specifically, our findings highlight misalignments in three aspects: (1) children are depicted as users of smart home products but there are insufficient child-friendly product features; (2) harmonious child-product co-presence is portrayed but potential child safety issues are neglected; and (3) children are shown as the subject of monitoring and datafication but there is limited information on child data collection and use. We discuss how parent-child relationships and parenting may be negatively impacted by such marketing depictions, and we provide design and policy recommendations for better incorporating child safety and privacy considerations into smart home products. 
    more » « less
  4. Smart home devices transmit highly sensitive usage information to servers owned by vendors or third-parties as part of their core functionality. Hence, it is necessary to provide users with the context in which their device data is collected and shared, to enable them to weigh the benefits of deploying smart home technology against the resulting loss of privacy. As privacy policies are generally expected to precisely convey this information, we perform a systematic and data-driven analysis of the current state of smart home privacy policies, with a particular focus on three key questions: (1) how hard privacy policies are for consumers to obtain, (2) how existing policies describe the collection and sharing of device data, and (3) how accurate these descriptions are when compared to information derived from alternate sources. Our analysis of 596 smart home vendors, affecting 2, 442 smart home devices yields 17 findings that impact millions of users, demonstrate gaps in existing smart home privacy policies, as well as challenges and opportunities for automated analysis. 
    more » « less
  5. Apple introduced privacy labels in Dec. 2020 as a way for developers to report the privacy behaviors of their apps. While Apple does not validate labels, they also require developers to provide a privacy policy, which offers an important comparison point. In this paper, we fine-tuned BERT-based language models to extract privacy policy features for 474,669 apps on the iOS App Store, comparing the output to the privacy labels. We identify discrepancies between the policies and the labels, particularly as they relate to data collected linked to users. We find that 228K apps' privacy policies may indicate data collection linked to users than what is reported in the privacy labels. More alarming, a large number (97%) of the apps with a Data Not Collected privacy label have a privacy policy indicating otherwise. We provide insights into potential sources for discrepancies, including the use of templates and confusion around Apple's definitions and requirements. These results suggest that significant work is still needed to help developers more accurately label their apps. Our system can be incorporated as a first-order check to inform developers when privacy labels are possibly misapplied. 
    more » « less