A key trend in the 210‐million‐year‐old history of modern turtles was the evolution of shell kinesis, that is, shell movement during neck and limb retraction. Kinesis is hypothesized to enhance predator defense in small terrestrial and semiaquatic turtles and has evolved multiple times since the early Cretaceous. This complex phenotype is nonfunctional and far from fully differentiated following embryogenesis. Instead, kinesis develops slowly in juveniles, providing a unique opportunity to illustrate the postembryonic origins of an adaptive trait. To this end, we examined ventral shell (plastral) kinesis in emydine box turtles and found that hatchling plastron shape differs from that of akinetic‐shelled relatives, particularly where the hinge that enables kinesis differentiates. We also demonstrated shape changes relative to plastron size in juveniles, coinciding with a shift in the carapace‐plastron structural connection, rearrangement of ectodermal plates, and bone repatterning. Furthermore, because the shell grows larger relative to the head, complete concealment of the head and extremities is only achieved after relative shell proportions increase. Structural alterations that facilitate the box turtle's transformation are probably prepatterned in embryos but require function‐induced changes to differentiate in juveniles. This mode of delayed trait differentiation is essential to phenotypic diversification in turtles and perhaps other tetrapods.
- Award ID(s):
- 1633535
- PAR ID:
- 10185785
- Date Published:
- Journal Name:
- Journal of Paleontology
- Volume:
- 94
- Issue:
- 3
- ISSN:
- 0022-3360
- Page Range / eLocation ID:
- 489 to 497
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Purugganan, Michael (Ed.)Abstract Nudix hydrolases are conserved enzymes ubiquitously present in all kingdoms of life. Recent research revealed that several Nudix hydrolases are involved in terpenoid metabolism in plants. In modern roses, RhNUDX1 is responsible for formation of geraniol, a major compound of rose scent. Nevertheless, this compound is produced by monoterpene synthases in many geraniol-producing plants. As a consequence, this raised the question about the origin of RhNUDX1 function and the NUDX1 gene evolution in Rosaceae, in wild roses or/and during the domestication process. Here, we showed that three distinct clades of NUDX1 emerged in the Rosoidae subfamily (Nudx1-1 to Nudx1-3 clades), and two subclades evolved in the Rosa genus (Nudx1-1a and Nudx1-1b subclades). We also showed that the Nudx1-1b subclade was more ancient than the Nudx1-1a subclade, and that the NUDX1-1a gene emerged by a trans-duplication of the more ancient NUDX1-1b gene. After the transposition, NUDX1-1a was cis-duplicated, leading to a gene dosage effect on the production of geraniol in different species. Furthermore, the NUDX1-1a appearance was accompanied by the evolution of its promoter, most likely from a Copia retrotransposon origin, leading to its petal-specific expression. Thus, our data strongly suggest that the unique function of NUDX1-1a in geraniol formation was evolved naturally in the genus Rosa before domestication.more » « less
-
null (Ed.)Abstract The Ao Mo Lae Formation of the Tarutao Group crops out on Thailand's Tarutao Island and contains a diverse assemblage of late Furongian trilobite taxa, including several endemic forms. This study presents a new genus and species, Satunarcus molaensis , discovered at two locations on the island. A cladistic analysis of the kaolishaniid subfamily Mansuyiinae in light of Satunarcus and similar genera known from across upper Cambrian equatorial Gondwanan rocks suggests that the subfamily is polyphyletic in its current definition, and thus is not a natural group. Separating Mansuyia Sun, 1924 from the other taxa conventionally placed in Mansuyiinae permits recognition of a previously unrecognized monophyletic subfamily Ceronocarinae new subfamily. As established herein, this kaolishaniid subfamily contains Satunarcus n. gen. and all genera previously recognized as Mansuyiinae. with the exception of Mansuyia itself. Ceronocarinae n. subfam. occur in middle Jiangshanian to middle Cambrian Stage 10 sedimentary rocks from Australia, South China, North China, and Sibumasu, with most genera endemic to Australia. UUID: http://zoobank.org/618c5136-73f0-4912-a7d3-e56559d2a76cmore » « less
-
null (Ed.)Paralamium (Lamiaceae) is a monotypic genus within the subfamily Lamioideae and has a sporadic distribution in subtropical mountains of southeast Asia. Although recent studies have greatly improved our understanding of generic relationships within Lamioideae, the second most species-rich subfamily of Lamiaceae, the systematic position of Paralamium within the subfamily remains unclear. In this study, we investigate the phylogenetic placement of the genus using three datasets: (1) a 69,276 bp plastome alignment of Lamiaceae; (2) a five chloroplast DNA region dataset of tribe Pogostemoneae, and (3) a nuclear ribosomal internal transcribed spacer region dataset of Pogostemoneae. These analyses demonstrate that Paralamium is a member of Pogostemoneae and sister to the monotypic genus Craniotome . In addition, generic-level phylogenetic relationships within Pogostemoneae are also discussed, and a dichotomous key for genera within Pogostemoneae is provided.more » « less
-
Abstract Early Cretaceous ichthyosaurs were globally distributed pelagic marine reptiles, but many remains are fragmentary, creating a Northern Hemisphere diversity bias. A rich Hauterivian locality near the Tyndall Glacier inside Torres del Paine National Park in southern Chile yields important new data regarding ichthyosaurian diversity along the Pacific margin of Gondwana. These new data will contribute to clarifying questions regarding ichthyosaur taxonomy and the palaeobiogeographical relationships between the southern Gondwanan and Northern Hemisphere ichthyosaur groups during the Early Cretaceous. Here, we describe three new ichthyosaur specimens from this locality. Two of them are referred to Myobradypterygius hauthali, expanding the distribution of this species from the Barremian of Argentina to the Hauterivian of the Chilean Patagonia. This material shows that M. hauthali differs from Platypterygius platydactylus in forefin construction and scapular morphology, supporting its classification as a separate genus within Platypterygiinae. The third specimen is a large-bodied indeterminate ophthalmosaurine ichthyosaur. This record represents the southernmost record of Ophthalmosaurinae and the first occurrence of this group from the Cretaceous of the Southern Hemisphere. These discoveries show that ophthalmosaurines and platypterygiines continued to occur sympatrically in southernmost Gondwana during the Early Cretaceous, expanding the pattern documented in Europe to the Pacific region.