Longitudinal and cross-sectional data is being collected at a Historically Black College (HBCU) to understand the cognitive development of students in their tolerance of ambiguity that may translate into their ability to solve open-ended problems. The data is expected to provide insight into the correlations between academic success, tolerance of ambiguity, intellectual development and development of a science, technology, engineering, and math (STEM) identity in undergraduate students. This work-in-progress paper provides preliminary data on tolerance of ambiguity in college students. Some results from the analysis of the data are included.
more »
« less
Development of Engineering Identity
Academic success of students in engineering has been reported in research literature to be correlated to the development of their engineering identity. This paper provides results of a cross-sectional study of undergraduate students’ development of engineering identity at a Historically Black College/University (HBCU). A validated 11-item questionnaire on engineering identity was administered to freshmen through seniors. The data was analyzed to determine correlations between engineering identity, time spent in college, and academic success. This work is supported by NSF Grant# 1832041.
more »
« less
- Award ID(s):
- 1832041
- PAR ID:
- 10185882
- Date Published:
- Journal Name:
- ASEE GSW Coneference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Longitudinal and cross-sectional data is being collected at a Historically Black College (HBCU) to understand the cognitive development of students in their tolerance of ambiguity that may translate into their ability to solve open-ended problems. The data is expected to provide insight into the correlations between academic success, tolerance of ambiguity, intellectual development and development of a science, technology, engineering, and math (STEM) identity in undergraduate students. This work-in-progress paper provides preliminary data on tolerance of ambiguity in college students. Some results from the analysis of the data are included.more » « less
-
null (Ed.)This work-in-progress research paper explores the way in which low-socioeconomic status (SES), first-year undergraduate engineering students develop their engineering identity. Identification with the field of engineering, or engineering identity development, is an ongoing process for students. While scholars have used retrospective studies to understand the developmental aspect of this process, a longitudinal study that follows students' engineering identity development could provide an advantageous viewpoint. In this study, we investigate the engineering identity profiles of incoming low-SES, high-achieving engineering students. We interviewed 13 students using a protocol focused on understanding the students' engineering identity profiles before entering engineering school. An integrated model of engineering identity development was used to frame the research and guide the analysis. Our preliminary results show existing pre-college identity-related patterns across students as well as initial ways of identifying with their major and engineering as a field. This work has contributions to research in the areas of engineering identity development as well as broadening understanding of engineering students who are both low-income and high-achieving. Our work has practical implications for academic and professional support programs for low-income engineering students and programs that aim to support engineering identity development.more » « less
-
The research and evaluation team of an S-STEM project at a large, research-intensive Southeastern public university conducted a cross-sectional survey as a first step to compare factors which may influence undergraduate student persistence in engineering and computing. All engineering and computing students were invited to participate in the survey, and 282 (10.4%) provided responses. The respondents included 15 high financial need students who were participating in the S-STEM program, of which 7 were first-year students and 8 were sophomores. The remaining 267 respondents were undergraduates ranging from first-year to seniors. Survey questions were adapted from previously developed instruments on self-efficacy, sense-of-belonging, identity, community involvement, and overall college experience. Additional questions related to stress levels, academic life, use and effectiveness of academic supports, and the impacts of COVID-19 on their college experiences. The team compared responses by level of academic progression, declared major, gender, and race/ethnicity. Student responses showed a variety of similarities and differences between subgroups. Overall, the students said that they often attended lectures (in-person or online) and came to class prepared. At the same time, students rated these activities as the least effective academic supports. On the other hand, the students rated working assigned or extra homework problems and studying for exams as their most effective activities. Consistently among the subgroups, the students said their community involvement and identity as developing engineers were relatively low while self-efficacy and team self-efficacy were seen as stronger personal skills. The students said they were highly stressed about their grades and academic success in general, and about finances and future careers. They reported feeling less stress about aspects such as living away from home and negotiating the university social scene. Students reported spending the most time preparing for class in their first year compared to students in later years. Female students (104 responses) reported higher levels of community involvement, engineering identity, and engagement in college life compared to male students (142 responses) while there was little gender-related difference in self-efficacy and sense of belonging. Levels of self-efficacy and team self-efficacy did not show large differences based on year in college. Interestingly, first-year students expressed the highest levels of engineering identity while senior students the lowest. Senior students reported the lowest community involvement, sense of belonging, and engineering identity compared to other students. Overall, students from different races self-reported the same levels of self-efficacy. Black/African American students reported the highest levels of community involvement, college life, and identity. There were no substantial differences in self-efficacy among the different engineering and computing majors. This study is a first step in analysis of the students’ input. In addition to surveying the students, the team also conducted interviews of the participating S-STEM students, and analysis of these interviews will provide greater depth to interpretation of the survey results. Overall, the research and evaluation team’s intention is to provide insight to the project’s leadership in how best to support the success of first-year engineering and computing students. https://peer.asee.org/student-persistence-factors-for-engineering-and-computing-undergraduatesmore » « less
-
null (Ed.)There has been a nationwide effort to increase the number, caliber, and diversity of the science, technology, engineering, and mathematics (STEM) workforce. Research on student development shows that while there is a need, providing financial aid alone is not a sufficient factor for academic success of low-income academically talented college students. Thus, Hostos Community College has recently created the NSF-funded Hostos Engineering Academic Talent (HEAT) Scholarship Program which offers its scholars financial support and experience with a combined mentoring model where students work with faculty and peers during the academic year. This research then systematically investigated the impact of a combined faculty- and peer-mentorship approach with a population not yet studied, undergraduate STEM students at minority-serving community colleges. Preliminary data indicates that the combined mentoring approach has positive effects on scholar’s academic performance and STEM identity. The findings are expected to be generalizable to other populations, and hence provide an opportunity to expand the combined mentorship model to other STEM programs at a variety of institutions whose students could benefit from its implementation.more » « less
An official website of the United States government

