skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Symmetries and privacy in control over the cloud: uncertainty sets and side knowledge *
Control algorithms, like model predictive control, can be computationally expensive and may benefit from being executed over the cloud. This is especially the case for nodes at the edge of a network since they tend to have reduced computational capabilities. However, control over the cloud requires transmission of sensitive data (e.g., system dynamics, measurements) which undermines privacy of these nodes. When choosing a method to protect the privacy of these data, efficiency must be considered to the same extent as privacy guarantees to ensure adequate control performance. In this paper, we review a transformation-based method for protecting privacy, previously introduced by the authors, and quantify the level of privacy it provides. Moreover, we also consider the case of adversaries with side knowledge and quantify how much privacy is lost as a function of the side knowledge of the adversary  more » « less
Award ID(s):
1740047
PAR ID:
10185992
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Conference on Decision and Control (CDC) 2019
Page Range / eLocation ID:
7209 to 7214
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wang, Yan; Yang, Hui (Ed.)
    Abstract The scarcity of measured data for defect identification often challenges the development and certification of additive manufacturing processes. Knowledge transfer and sharing have become emerging solutions to small-data challenges in quality control to improve machine learning with limited data, but this strategy raises concerns regarding privacy protection. Existing zero-shot learning and federated learning methods are insufficient to represent, select, and mask data to share and control privacy loss quantification. This study integrates differential privacy in cybersecurity with federated learning to investigate sharing strategies of manufacturing defect ontology. The method first proposes using multilevel attributes masked by noise in defect ontology as the sharing data structure to characterize manufacturing defects. Information leaks due to the sharing of ontology branches and data are estimated by epsilon differential privacy (DP). Under federated learning, the proposed method optimizes sharing defect ontology and image data strategies to improve zero-shot defect classification given privacy budget limits. The proposed framework includes (1) developing a sharing strategy based on multilevel attributes in defect ontology with controllable privacy leaks, (2) optimizing joint decisions in differential privacy, zero-shot defect classification, and federated learning, and (3) developing a two-stage algorithm to solve the joint optimization, combining stochastic gradient descent search for classification models and an evolutionary algorithm for exploring data-sharing strategies. A case study on zero-shot learning of additive manufacturing defects demonstrated the effectiveness of the proposed method in data-sharing strategies, such as ontology sharing, defect classification, and cloud information use. 
    more » « less
  2. null (Ed.)
    As multi-agent systems proliferate, there is in-creasing demand for coordination protocols that protect agents’ sensitive information while allowing them to collaborate. To help address this need, this paper presents a differentially private formation control framework. Agents’ state trajectories are protected using differential privacy, which is a statistical notion of privacy that protects data by adding noise to it. We provide a private formation control implementation and analyze the impact of privacy upon the system. Specifically, we quantify tradeoffs between privacy level, system performance, and connectedness of the network’s communication topology. These tradeoffs are used to develop guidelines for calibrating privacy in terms of control theoretic quantities, such as steady-state error, without requiring in-depth knowledge of differential privacy. Additional guidelines are also developed for treating privacy levels and network topologies as design parameters to tune the network’s performance. Simulation results illustrate these tradeoffs and show that strict privacy is inherently compatible with strong system performance. 
    more » « less
  3. Disaggregating memory from compute offers the opportunity to better utilize stranded memory in cloud data centers. It is important to cache data in the compute nodes and maintain cache coherence across multiple compute nodes. However, the limited computing power on disaggregated memory servers makes traditional cache coherence protocols suboptimal, particularly in the case of stranded memory. This paper introduces SELCC; a Shared-Exclusive Latch Cache Coherence protocol that maintains cache coherence without imposing any computational burden on the remote memory side. It aligns the state machine of the shared-exclusive latch protocol with the MSI protocol, thereby ensuring both atomicity of data access and cache coherence with sequential consistency. SELCC embeds cache-ownership metadata directly into the RDMA latch word, enabling efficient cache ownership management via RDMA atomic operations. SELCC can serve as an abstraction layer over disaggregated memory with APIs that resemble main-memory accesses. A concurrent B-tree and three transaction concurrency control algorithms are realized using SELCC's abstraction layer. Experimental results show that SELCC significantly outperforms RPC-based protocols for cache coherence under limited remote computing power. Applications on SELCC achieve comparable or superior performance over disaggregated memory compared to competitors. 
    more » « less
  4. The recent edge computing infrastructure introduces a new computing model that works as a complement of the traditional cloud computing. The edge nodes in the infrastructure reduce the network latency of the cloud computing model and increase data privacy by offloading the sensitive computation from the cloud to the edge. Recent research focuses on the applications and performance of the edge computing, but less attention is paid to the security of this new computing paradigm. Inspired by the recent move of hardware vendors that introducing hardware-assisted Trusted Execution Environment (TEE), we believe applying these TEEs on the edge nodes would be a natural choice to secure the computation and sensitive data on these nodes. In this paper, we investigate the typical hardware-assisted TEEs and evaluate the performance of these TEEs to help analyze the feasibility of deploying them on the edge platforms. Our experiments show that the performance overhead introduced by the TEEs is low, which indicates that integrating these TEEs into the edge nodes can efficiently mitigate security loopholes with a low performance overhead. 
    more » « less
  5. The recent edge computing infrastructure introduces a new computing model that works as a complement of the traditional cloud computing. The edge nodes in the infrastructure reduce the network latency of the cloud computing model and increase data privacy by offloading the sensitive computation from the cloud to the edge. Recent research focuses on the applications and performance of the edge computing, but less attention is paid to the security of this new computing paradigm. Inspired by the recent move of hardware vendors that introducing hardware-assisted Trusted Execution Environment (TEE), we believe applying these TEEs on the edge nodes would be a natural choice to secure the computation and sensitive data on these nodes. In this paper, we investigate the typical hardware-assisted TEEs and evaluate the performance of these TEEs to help analyze the feasibility of deploying them on the edge platforms. Our experiments show that the performance overhead introduced by the TEEs is low, which indicates that integrating these TEEs into the edge nodes can efficiently mitigate security loopholes with a low performance overhead. 
    more » « less