skip to main content


Title: Transformative learning networks
In this paper, we consider how learning networks build capacity for system transformation. We define learning networks as inter-organizational voluntary collaboratives that nurture professional expertise, and describe their potential to catalyze systemic change by disrupting old habits, fostering new relationships, and providing freedom to experiment. We underscore the complexity of designing, facilitating, and sustaining learning networks, noting four distinct ways learning networks can foster systemic resilience, 1) social-psychological 2) engineering 3) social-ecological, and 4) emancipatory. We then describe our research methods and introduce four learning network case study analyses, in order of their age and relative progress towards transformation: • National Alliance for Broader Impacts (NABI) • 100 Resilient Cities Network (100RC) • Fire Adapted Community Learning Network (FAC Net) • START (Global Change SysTem for Analysis, Research & Training)  more » « less
Award ID(s):
1524832
NSF-PAR ID:
10186101
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 60th Annual Meeting of the ISSS
Volume:
1
Issue:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research offers the first use of graph theory mathematics in social network analysis to explore relationships built through an alternative food network. The local food system is visualized using geo-social data from 110 farms and 224 markets around Baltimore County, Maryland, with 699 connections between them. Network behavior is explored through policy document review and interviews. The findings revealed a small-world architecture, with system resiliency built-in by diversified marketing practices at central nodes. This robust network design helps to explain the long-term survival of local food systems despite the meteoric rise of global industrial food supply chains. Modern alternative food networks are an example of a movement that seeks to reorient economic power structures in response to a variety of food system-related issues not limited to consumer health but including environmental impacts. Uncovering the underlying network architecture of this sustainability-oriented social movement helps reveal how it weaves systemic change more broadly. The methods used in this study demonstrate how social values, social networks, markets, and governance systems embed to transform both physical landscapes and human bodies. Network actors crafted informal policy reports, which were directly incorporated in state and local official land-use and economic planning documents. Community governance over land-use policy suggests a powerful mechanism for further localizing food systems. 
    more » « less
  2. null (Ed.)
    Abstract Background Transforming the culture of STEM higher education to be more inclusive and help more students reach STEM careers is challenging. Herein, we describe a new model for STEM higher education transformation, the Sustainable, Transformative Engagement across a Multi-Institution/Multidisciplinary STEM, (STEM) 2 , “STEM-squared”, Network. The Network embraces a pathways model, as opposed to a pipeline model, to STEM career entry. It is founded upon three strong theoretical frameworks: Communities of Transformation, systems design for organizational change, and emergent outcomes for the diffusion of innovations in STEM education. Currently composed of five institutions—three private 4-year universities and two public community colleges—the Network capitalizes on the close geographic proximity and shared student demographics to effect change across the classroom, disciplinary, institutional, and inter-institutional levels. Results The (STEM) 2 Network has increased the extent to which participants feel empowered to be change agents for STEM higher education reform and has increased collaboration across disciplines and institutions. Participants were motivated to join the Network to improve STEM education, to improve the transfer student experience, to collaborate with colleagues across disciplines and institutions, and because they respected the leadership team. Participants continue to engage in the Network because of the collaborations created, opportunities for professional growth, opportunities to improve STEM education, and a sense that the Network is functioning as intended. Conclusion The goal to increase the number and diversity of people entering STEM careers is predicated on transforming the STEM higher education system to embrace a pathways model to a STEM career. The (STEM) 2 Network is achieving this by empowering faculty to transform the system from the inside. While the systemic transformation of STEM higher education is challenging, the (STEM) 2 Network directly addresses those challenges by bridging disciplinary and institutional silos and leveraging the reward structure of the current system to support faculty as they work to transform this very system. 
    more » « less
  3. Background/Context: After-school programs that focus on integrating computer programming and mathematics in authentic environments are seldomly accessible to students from culturally and linguistically diverse backgrounds, particularly bilingual Latina students in rural contexts. Providing a context that broadens Latina students’ participation in mathematics and computer programming requires educators to carefully examine how verbal and nonverbal language is used to interact and to position students as they learn new concepts in middle school. This is also an important stage for adolescents because they are likely to make decisions about their future careers in STEM. Having access to discourse and teaching practices that invite students to participate in mathematics and computer programming affords them opportunities to engage with these fields. Purpose/Focus of Study: This case study analyzes how small-group interactions mediated the positionings of Cindy, a bilingual Latina, as she learned binary numbers in an after-school program that integrated computer programming and mathematics (CPM). Setting: The Advancing Out-of-School Learning in Mathematics and Engineering (AOLME) program was held in a rural bilingual (Spanish and English) middle school in the Southwest. The after-school program was designed to provide experiences for primarily Latinx students to learn how to integrate mathematics with computer programming using Raspberry Pi and Python as a platform. Our case study explores how Cindy was positioned as she interacted with two undergraduate engineering students who served as facilitators while learning binary numbers with a group of three middle school students. Research Design: This single intrinsic case focused on exploring how small-group interactions among four students mediated Cindy’s positionings as she learned binary numbers through her participation in AOLME. Data sources included twelve 90-minute video sessions and Cindy’s journal and curriculum binder. Video logs were created, and transcripts were coded to describe verbal and nonverbal interactions among the facilitators and Cindy. Analysis of select episodes was conducted using systemic functional linguistics (SFL), specifically language modality, to identify how positioning took place. These episodes and positioning analysis describe how Cindy, with others, navigated the process of learning binary numbers under the stereotype that female students are not as good at mathematics as male students. Findings: From our analysis, three themes that emerged from the data portray Cindy’s experiences learning binary numbers. The major themes are: (1) Cindy’s struggle to reveal her understanding of binary numbers in a competitive context, (2) Cindy’s use of “fake it until you make it” to hide her cognitive dissonance, and (3) the use of Spanish and peers’ support to resolve Cindy’s understanding of binary numbers. The positioning patterns observed help us learn how, when Cindy’s bilingualism was viewed and promoted as an asset, this social context worked as a generative axis that addressed the challenges of learning binary numbers. The contrasting episodes highlight the facilitators’ productive teaching strategies and relations that nurtured Cindy’s social and intellectual participation in CPM. Conclusions/Recommendations: Cindy’s case demonstrates how the facilitator’s teaching, and participants’ interactions and discourse practices contributed to her qualitatively different positionings while she learned binary numbers, and how she persevered in this process. Analysis of communication acts supported our understanding of how Cindy’s positionings underpinned the discourse; how the facilitators’ and students’ discourse formed, shaped, or shifted Cindy’s positioning; and how discourse was larger than gender storylines that went beyond classroom interactions. Cindy’s case reveals the danger of placing students in “struggle” instead of a “productive struggle.” The findings illustrated that when Cindy was placed in struggle when confronting responding moves by the facilitator, her “safe” reaction was hiding and avoiding. In contrast, we also learned about the importance of empathetic, nurturing supporting responses that encourage students’ productive struggle to do better. We invite instructors to notice students’ hiding or avoiding and consider Cindy’s case. Furthermore, we recommend that teachers notice their choice of language because this is important in terms of positioning students. We also highlight Cindy’s agency as she chose to take up her friend’s suggestion to “fake it” rather than give up. 
    more » « less
  4. Abstract

    Around the world today, the magnitude and rates of environmental, social, and economic change are undermining the sustainability of many rural societies that rely directly on natural resources for their livelihoods. Sustainable development efforts seek to promote livelihood adaptations that enhance food security and reduce social-ecological vulnerability, but these efforts are hampered by the difficulty of understanding the complexity and dynamism of rural livelihood systems. Disparate research avenues are strengthening our ability to grapple with complexity. But we are only just beginning to find ways to simultaneously account for problematic complexities, including multiscalar feedbacks in the ecosystems that that support livelihoods, the heterogeneous benefits garnered by different segments of society, and the complex contingencies that constrain people’s decisions and capacities to adapt. To provide a more nuanced analysis of the dynamics of transformation in rural livelihood systems, we identified key complementarities between four different research approaches, enabling us to integrate them in a novel research framework that can guide empirical and modeling research on livelihood adaptation. The framework capitalizes upon parallel concepts of sequentiality in (1) ecosystem services and (2) livelihood adaptation scholarship, then incorporates principles from (3) adaptation in social-ecological systems research to account for the dynamism inherent in these often rapidly-transforming systems. Lastly, we include advances in (4) agent-based modeling, which couples human decisions and land use change and provides tools to incorporate complex social-ecological feedbacks in simulation studies of livelihood adaptation. Here we describe the new Ecosystem Services—Livelihood Adaptation (ESLA) framework, explain how it links the contributing approaches, and illustrate its application with two case studies. We offer guidance for its implementation in empirical and modeling research, and conclude with a discussion of current challenges in sustainability science and the contributions that could be gained through research guided by the ESLA framework.

     
    more » « less
  5. Changing Electrical and Computer Engineering Department Culture from the Bottom Up: Action Plans Generated from Faculty Interviews We prefer a Lessons Learned Paper. In a collaborative effort between a RED: Revolutionizing Engineering and Computer Science Departments (RED) National Science Foundation grant awarded to an electrical and computer engineering department (ECpE) and a broader, university-wide ADVANCE program, ECpE faculty were invited to participate in focus groups to evaluate the culture of their department, to further department goals, and to facilitate long-term planning. Forty-four ECpE faculty members from a large Midwestern university participated in these interviews, which were specifically focused on departmental support and challenges, distribution of resources, faculty workload, career/family balance, mentoring, faculty professional development, productivity, recruitment, and diversity. Faculty were interviewed in groups according to rank, and issues important to particular subcategories of faculty (e.g., rank, gender, etc.) were noted. Data were analyzed by a social scientist using the full transcript of each interview/focus group and the NVivo 12 Qualitative Research Software Program. She presented the written report to the entire faculty. Based on the results of the focus groups, the ECpE department developed an action plan with six main thrusts for improving departmental culture and encouraging departmental change and transformation. 1. Department Interactions – Encourage open dialogue and consider department retreats. Academic areas should be held accountable for the working environment and encouraged to discuss department-related issues. 2. Mentoring, Promotion, and Evaluation – Continue mentoring junior faculty. Improve the clarity of P&T operational documents and seek faculty input on the evaluation system. 3. Teaching Loads – Investigate teaching assistant (TA) allocation models and explore models for teaching loads. Develop a TA performance evaluation system and return TA support to levels seen in the 2010 timeframe. Improvements to teaching evaluations should consider differential workloads, clarifying expectations for senior advising, and hiring more faculty for undergraduate-heavy areas. 4. Diversity, Equity, and Inclusion – Enact an explicit focus on diversity in hiring. Review departmental policies on inclusive teaching and learning environments. 5. Building – Communicate with upper administration about the need for a new building. Explore possibilities for collaborations with Computer Science on a joint building. 6. Support Staff – Increase communication with the department regarding new service delivery models. Request additional support for Human Resources, communications, and finance. Recognize staff excellence at the annual department banquet and through college/university awards. 
    more » « less