This research offers the first use of graph theory mathematics in social network analysis to explore relationships built through an alternative food network. The local food system is visualized using geo-social data from 110 farms and 224 markets around Baltimore County, Maryland, with 699 connections between them. Network behavior is explored through policy document review and interviews. The findings revealed a small-world architecture, with system resiliency built-in by diversified marketing practices at central nodes. This robust network design helps to explain the long-term survival of local food systems despite the meteoric rise of global industrial food supply chains. Modern alternative food networks are an example of a movement that seeks to reorient economic power structures in response to a variety of food system-related issues not limited to consumer health but including environmental impacts. Uncovering the underlying network architecture of this sustainability-oriented social movement helps reveal how it weaves systemic change more broadly. The methods used in this study demonstrate how social values, social networks, markets, and governance systems embed to transform both physical landscapes and human bodies. Network actors crafted informal policy reports, which were directly incorporated in state and local official land-use and economic planning documents. Community governance over land-use policy suggests a powerful mechanism for further localizing food systems.
more »
« less
Transformative learning networks
In this paper, we consider how learning networks build capacity for system transformation. We define learning networks as inter-organizational voluntary collaboratives that nurture professional expertise, and describe their potential to catalyze systemic change by disrupting old habits, fostering new relationships, and providing freedom to experiment. We underscore the complexity of designing, facilitating, and sustaining learning networks, noting four distinct ways learning networks can foster systemic resilience, 1) social-psychological 2) engineering 3) social-ecological, and 4) emancipatory. We then describe our research methods and introduce four learning network case study analyses, in order of their age and relative progress towards transformation: • National Alliance for Broader Impacts (NABI) • 100 Resilient Cities Network (100RC) • Fire Adapted Community Learning Network (FAC Net) • START (Global Change SysTem for Analysis, Research & Training)
more »
« less
- Award ID(s):
- 1524832
- PAR ID:
- 10186101
- Date Published:
- Journal Name:
- Proceedings of the 60th Annual Meeting of the ISSS
- Volume:
- 1
- Issue:
- 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
After decades of growth, a research community's network information system and data repository were transformed to become a national data management office and a major element of data infrastructure for ecology and the environmental sciences. Developing functional data infrastructures is key to the support of ongoing Open Science and Open Data efforts. This example of data infrastructure growth contrasts with the top‐down development typical of many digital initiatives. The trajectory of this network information system evolved within a collaborative, long‐term ecological research community. This particular community is funded to conduct ecological research while collective data management is also carried out across its geographically dispersed study sites. From this longitudinal ethnography, we describe an Incremental Growth Model that includes a sequence of six relatively stable phases where each phase is initiated by a rapid response to a major pivotal event. Exploring these phases and the roles of data workers provides insight into major characteristics of digital growth. Further, a transformation in assumptions about data management is reported for each phase. Investigating the growth of a community information system over four decades as it becomes data infrastructure reveals details of its social, technical, and institutional dynamics. In addition to addressing how digital data infrastructure characteristics change, this study also considers when the growth of data infrastructure begins.more » « less
-
null (Ed.)Abstract Background Transforming the culture of STEM higher education to be more inclusive and help more students reach STEM careers is challenging. Herein, we describe a new model for STEM higher education transformation, the Sustainable, Transformative Engagement across a Multi-Institution/Multidisciplinary STEM, (STEM) 2 , “STEM-squared”, Network. The Network embraces a pathways model, as opposed to a pipeline model, to STEM career entry. It is founded upon three strong theoretical frameworks: Communities of Transformation, systems design for organizational change, and emergent outcomes for the diffusion of innovations in STEM education. Currently composed of five institutions—three private 4-year universities and two public community colleges—the Network capitalizes on the close geographic proximity and shared student demographics to effect change across the classroom, disciplinary, institutional, and inter-institutional levels. Results The (STEM) 2 Network has increased the extent to which participants feel empowered to be change agents for STEM higher education reform and has increased collaboration across disciplines and institutions. Participants were motivated to join the Network to improve STEM education, to improve the transfer student experience, to collaborate with colleagues across disciplines and institutions, and because they respected the leadership team. Participants continue to engage in the Network because of the collaborations created, opportunities for professional growth, opportunities to improve STEM education, and a sense that the Network is functioning as intended. Conclusion The goal to increase the number and diversity of people entering STEM careers is predicated on transforming the STEM higher education system to embrace a pathways model to a STEM career. The (STEM) 2 Network is achieving this by empowering faculty to transform the system from the inside. While the systemic transformation of STEM higher education is challenging, the (STEM) 2 Network directly addresses those challenges by bridging disciplinary and institutional silos and leveraging the reward structure of the current system to support faculty as they work to transform this very system.more » « less
-
Abstract The (STEM)2Network (Sustainable, Transformative Engagement across a Multi-Institution/Multidisciplinary STEM Network) is a National Science Foundation Research Coordination Network-Undergraduate Biology Education funded project intended to bridge disciplinary and institutional silos that function as barriers to systemic change in science, technology, engineering, and mathematics (STEM) in higher education. We utilized three foundational frameworks to develop an adaptable model that we posit is applicable across contexts. The model includes a core infrastructure that, combined with intentional self-reflection, results in an adaptable design that can be tailored to individual institutions, contexts, and goals. Herein, we describe the inception of the network, the foundational theoretical frameworks that guide network development and growth, and detail network structure and operations with the intention of supporting others in creating their own networks. We share the nuts and bolts of how we developed the (STEM)2Network, and include a supplemental network development planning guide to support others in utilizing the (STEM)2Network model to reach their own objectives.more » « less
-
Sybil attacks present a significant threat to many Internet systems and applications, in which a single adversary inserts multiple colluding identities in the system to compromise its security and privacy. Recent work has advocated the use of social-network-based trust relationships to defend against Sybil attacks. However, most of the prior security analyses of such systems examine only the case of social networks at a single instant in time. In practice, social network connections change over time, and attackers can also cause limited changes to the networks. In this work, we focus on the temporal dynamics of a variety of social-network-based Sybil defenses. We describe and examine the effect of novel attacks based on: (a) the attacker's ability to modify Sybil-controlled parts of the social-network graph, (b) his ability to change the connections that his Sybil identities maintain to honest users, and (c) taking advantage of the regular dynamics of connections forming and breaking in the honest part of the social network. We find that against some defenses meant to be fully distributed, such as SybilLimit and Persea, the attacker can make dramatic gains over time and greatly undermine the security guarantees of the system. Even against centrally controlled Sybil defenses, the attacker can eventually evade detection (e.g. against SybilInfer and SybilRank) or create denial-of-service conditions (e.g. against Ostra and SumUp). After analysis and simulation of these attacks using both synthetic and real-world social network topologies, we describe possible defense strategies and the trade-offs that should be explored. It is clear from our findings that temporal dynamics need to be accounted for in Sybil defense or else the attacker will be able to undermine the system in unexpected and possibly dangerous ways.more » « less
An official website of the United States government

