skip to main content

Title: Is coastal adaptation a public good? The financing characteristics of good characteristics in coastal adaptation
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of environmental planning and management
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Gliders are low‐power autonomous underwater vehicles used to obtain oceanic measurements in vertical sections. Assimilation of glider temperature and salinity into coastal ocean circulation models holds the potential to improve the ocean subsurface structure estimate. In this study, the impact of assimilation of glider observations is studied using a four‐dimensional variational (4DVAR) data assimilation and forecast system set offshore of Oregon and Washington on the U.S. West Coast. Four test cases are compared: (1) no assimilation, (2) assimilation of glider temperature and salinity data alone, (3) assimilation of the glider data in combination with the surface observations including satellite sea surface temperature, sea surface height, and high‐frequency radar surface velocities, and (4) assimilation of the surface data alone. It is found that the assimilation of glider observations alone creates unphysical eddies in the vicinity of the glider transect. As a consequence, the forecast errors in the surface velocity and temperature increase compared to the case without data assimilation. Assimilation of surface and subsurface observations in combination prevents these features from forming and reduces the errors in the forecasts for the subsurface fields compared to the other three experiments. These improvements persisted in 21‐day forecasts run after the last data assimilation cycle.

    more » « less
  2. Abstract Aim

    The spectral variability hypothesis (SVH) predicts that spectral diversity, defined as the variability of radiation reflected from vegetation, increases with biodiversity. While confirmation of this hypothesis would pave the path for use of remote sensing to monitor biodiversity, support in herbaceous ecosystems is mixed. Methodological aspects related to scale have been the predominant explanation for the mixed support, yet biological characteristics that vary among herbaceous systems may also affect the strength of the relationship. Therefore, we examined the influence of three biological characteristics on the relationship between spectral and taxonomic diversity: vegetation density, spatial species turnover and invasion by non‐native species. We aimed to understand when and why spectral diversity may serve as an indicator of taxonomic diversity and be useful for monitoring.


    Continental U.S.A.

    Time Period

    Peak greenness in 2017.

    Major Taxa Studied

    Grassland and herbaceous ecosystems.


    For nine herbaceous sites in the National Ecological Observatory Network, we calculated taxonomic diversity from field surveys of 20 m × 20 m plots and derived spectral diversity for those same plots from airborne hyperspectral imagery with a spatial resolution of 1 m. The strength of the taxonomic diversity–spectral diversity relationship at each site was subsequently assessed against measurements of vegetation density, spatial species turnover and invasion.


    We found a significant relationship between taxonomic and spectral diversity at some, but not all, sites. Spectral diversity was more strongly related to taxonomic diversity in sites with high species turnover and low invasion, but vegetation density had no effect on the relationship.

    Main Conclusions

    Using spectral diversity as a proxy for taxonomic diversity in grasslands is possible in some circumstances but should not just be assumed based on the SVH. It is important to understand the biological characteristics of a community prior to considering spectral diversity to monitor taxonomic diversity.

    more » « less