skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1715638

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Given the inevitability of sea-level rise, investigating processes of human-altered coastlines at the intermediate timescales of years to decades can sometimes feel like an exercise in futility. Returning to the big picture and long view of feedbacks, emergent dynamics, and wider context, here we offer 10 existential questions for research into human–coastal coupled systems. 
    more » « less
  2. Abstract Although coasts are frequently seen as at the frontline of near-future environmental risk, there is more to the understanding of the future of coastal environments than a simple interaction between increasing hazards (particularly related to global sea level rise) and increasing exposure and vulnerability of coastal populations. The environment is both multi-hazard and regionally differentiated, and coastal populations, in what should be seen as a coupled social–ecological–physical system, are both affected by, and themselves modify, the impact of coastal dynamics. As the coupled dance between human decisions and coastal environmental change unfolds over the coming decades, transdisciplinary approaches will be required to come to better decisions on identifying and following sustainable coastal management pathways, including the promotion of innovative restoration activities. Inputs from indigenous knowledge systems and local communities will be particularly important as these stakeholders are crucial actors in the implementation of ecosystem-based mitigation and adaptation strategies. 
    more » « less
  3. Abstract The discussion of adaptation to climate change in coastal areas has focused on short-term risk reduction and climate-proofing, but there is growing recognition that—at some point in the future—relocation to less vulnerable geographical areas will become necessary for large numbers of residents in many coastal communities. Spontaneous relocations that occur after catastrophic events can entail high costs, both for those who resettle elsewhere and for the remaining community. Managed retreat attempts to reduce such costs, thereby facilitating the relocation process. Property buyouts, the most prominently discussed policy tool for managed retreat, present significant challenges in terms of equity, timing, finance, and scale. We discuss innovation in buyout policy that allows residents to remain in their homes as renters after being bought out. We develop the basic structure of such a policy and show the pathways through which it can help to finance buyouts, harmonize public and private decision-making, and manage the timing of community transition. We also recommend funding mechanisms and other details to overcome the substantial barriers to implementation. Although buyouts with rentbacks will require institutional innovation in order to serve as an effective policy framework, the policy has the potential to improve social, economic, and environmental outcomes from the eventual unfortunate but necessary migration away from coastal areas. 
    more » « less
  4. Abstract Empirical diagnosis of stability has received considerable attention, often focused on variance metrics for early warning signals of abrupt system change or delicate techniques measuring Lyapunov spectra. The theoretical foundation for the popular early warning signal approach has been limited to relatively simple system changes such as bifurcating fixed points where variability is extrinsic to the steady state. We offer a novel measurement of stability that applies in wide ranging systems that contain variability in both internal steady state dynamics and in response to external perturbations. Utilizing connections between stability, dissipation, and phase space flow, we show that stability correlates with temporal asymmetry in a measure of phase space flow contraction. Our method is general as it reveals stability variation independent of assumptions about the nature of system variability or attractor shape. After showing efficacy in a variety of model systems, we apply our technique for measuring stability to monthly returns of the S&P 500 index in the time periods surrounding the global stock market crash of October 1987. Market stability is shown to be higher in the several years preceding and subsequent to the 1987 market crash. We anticipate our technique will have wide applicability in climate, ecological, financial, and social systems where stability is a pressing concern. 
    more » « less
  5. Scientists seek to understand the causal processes that generate sustainability problems and determine effective solutions. Yet, causal inquiry in nature–society systems is hampered by conceptual and methodological challenges that arise from nature–society interdependencies and the complex dynamics they create. Here, we demonstrate how sustainability scientists can address these challenges and make more robust causal claims through better integration between empirical analyses and process- or agent-based modeling. To illustrate how these different epistemological traditions can be integrated, we present four studies of air pollution regulation, natural resource management, and the spread of COVID-19. The studies show how integration can improve empirical estimates of causal effects, inform future research designs and data collection, enhance understanding of the complex dynamics that underlie observed temporal patterns, and elucidate causal mechanisms and the contexts in which they operate. These advances in causal understanding can help sustainability scientists develop better theories of phenomena where social and ecological processes are dynamically intertwined and prior causal knowledge and data are limited. The improved causal understanding also enhances governance by helping scientists and practitioners choose among potential interventions, decide when and how the timing of an intervention matters, and anticipate unexpected outcomes. Methodological integration, however, requires skills and efforts of all involved to learn how members of the respective other tradition think and analyze nature–society systems. 
    more » « less
  6. null (Ed.)