skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing the fundamental imaging depth limit of two-photon, three-photon, and non-degenerate two-photon microscopy
Award ID(s):
1633516
PAR ID:
10186121
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
10
ISSN:
0146-9592
Page Range / eLocation ID:
2934
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. We developed multiplexed miniaturized two-photon microscopes (M-MINI2Ps) that increase imaging speed while preserving high spatial resolution. Using M-MINI2Ps, we performed large-scale volumetric calcium imaging and high-speed voltage imaging in the cortex of freely- behaving mice. 
    more » « less
  3. Multiphoton absorption of entangled photons offers ways for obtaining unique information about chemical and biological processes. Measurements with entangled photons may enable sensing biological signatures with high selectivity and at very low light levels to protect against photodamage. In this paper, we present a theoretical and experimental study of the excitation wavelength dependence of the entangled two-photon absorption (ETPA) process in a molecular system, which provides insights into how entanglement affects molecular spectra. We demonstrate that the ETPA excitation spectrum can be different from that of classical TPA as well as that for one-photon resonant absorption (OPA) with photons of doubled frequency. These results are modeled by assuming the ETPA cross-section is governed by a two-photon excited state radiative linewidth rather than by electron-phonon interactions, and this leads to excitation spectra that match the observed results. Further, we find that the two-photon-allowed states with highest TPA and ETPA intensities have high electronic entanglements, with ETPA especially favoring states with the longest radiative lifetimes. These results provide concepts for the development of quantum light–based spectroscopy and microscopy that will lead to much higher efficiency of ETPA sensors and low-intensity detection schemes. 
    more » « less