skip to main content

Title: Bridging the Workforce Skills Gap in High Value Manufacturing through Continuing Education
Research shows that there is a growing need for skilled workers in the area of advanced manufacturing; this refers to making use of new technologies and advanced processes to produce products that have high value. More importantly, U.S. government employment data reveals that there is lack of supply of skilled workers in the manufacturing sector. Furthermore, it has also been widely cited in industrial literature that there is a concern regarding the job readiness of fresh college graduates and the gaps in skills sets needed to be successful in an industrial setting, especially in the engineering or manufacturing fields. One approach to bridge the skills gap is to provide customized continuing education to current the workforce as per the industry need. This paper presents a case study of such customized continuing education offered by Texas A&M University for oil and gas industry in Houston, Texas. Specifically, as a part of National Science Foundation Advanced Technological Education project, two professional development sessions were organized in the summer of 2018 in Houston targeting the energy industry. Both programs were two-days long and focused on two key aspects of high value manufacturing: manufacturing operations excellence and manufacturing quality excellence. The professional development sessions more » were focused on materials and inventory planning, production economics, manufacturing quality, non-destructive evaluation, statistical process control, and lean/ sixsigma. The continuing education programs and course materials were developed based on the feedback from the industry advisory board for the Manufacturing Center of Excellence at Houston Community College, which is a collaborating partner on the ATE Grant. As a part of assessment of the programs, industry participants in the both sessions were given comprehensive surveys asking for their feedback on the applicability of the educational sessions. Overall, the participants rated the sessions very highly on the organization and the relevancy of the program topics and learning materials. The participants also felt that they learned new information through these programs. « less
Authors:
Award ID(s):
1501952
Publication Date:
NSF-PAR ID:
10186254
Journal Name:
ASEE annual conference
ISSN:
0190-1052
Sponsoring Org:
National Science Foundation
More Like this
  1. Intelligent Autonomous Systems, including Intelligent Manufacturing & Automation and Industry 4.0, have immense potential to improve human health, safety, and welfare. Engineering these systems requires an interdisciplinary knowledge of mechanical, electrical, computer, software, and systems engineering throughout the design and development process. Mechatronics and Robotics Engineering (MRE) is emerging as a discipline that can provide the broad inter-disciplinary technical and professional skill sets that are critical to fulfill the research and development needs for these advanced systems. Despite experiencing tremendous, dynamic growth, MRE lacks a settled-on and agreed-upon body-of-knowledge, leading to unmet needs for standardized curricula, courses, laboratory platforms, andmore »accreditation criteria, resulting in missed career opportunities for individuals and missed economic opportunities for industry. There have been many educational efforts around MRE, including courses, minors, and degree programs, but they have not been well integrated or widely adopted, especially in USA. To enable MRE to coalesce as a distinct and identifiable engineering field, the authors conducted four workshops on the Future of Mechatronics and Robotics Engineering (FoMRE) education at the bachelor’s degree level. The overall goal of the workshops was to improve the quality of undergraduate MRE education and to ease the adoption of teaching materials to prepare graduates with a blend of theoretical knowledge and practical hands-on skills. To realize this goal, the specific objectives were to generate enthusiasm and a sense of community among current and future MRE educators, promote diversity and inclusivity within the MRE community, identify thought leaders, and seek feedback from the community to serve as a foundation for future activities. The workshops were intended to benefit a wide range of participants including educators currently teaching or developing programs in MRE, PhD students seeking academic careers in MRE, and industry professionals desiring to shape the future workforce. Workshop activities included short presentations on sample MRE programs, breakout sessions on specific topics, and open discussion sessions. As a result of these workshops, the MRE educational community has been enlarged and engaged, with members actively contributing to the scholarship of teaching and learning. This paper presents the workshops’ formats, outcomes, results of participant surveys, and their analyses. A major outcome was identifying concept, skill, and experience inventories organized around the dimensions of foundational/practical/applications and student preparation/MRE knowledgebase. Particular attention is given to the extent to which the workshops realized the project goals, including attendee demographics, changes in participant attitudes, and development of the MRE community. The paper concludes with a summary of lessons learned and a call for future activities to shape the field.« less
  2. Projects rarely go according to plan, but this is especially true of those that involve multiple institutions and have a significant degree of complexity associated with them. This work relates the experiences an Advanced Technological Education (ATE) project around high value manufacturing. The project was a collaboration with a Texas A&M University and Houston Community College. The project comprised three main aspects: 1) the development of a certificate program in high value manufacturing; 2) offering professional development to working professionals in the area of high value manufacturing; and 3) educating teachers about advanced manufacturing with a goal of recruiting theirmore »students into manufacturing careers. This work describes the lessons learned through each of the project aspects. The design of the High Value Manufacturing Certificate Program required close collaboration between both institutions. The issues that arose during this development process included personnel turnover, approval timelines and processes, and agreement on the course content. The authors will relay how they navigated these issues to get the program created and approved. The creation of the professional development program did not involve the community college directly, but was very dependent on recruiting participants. This recruitment proved to be more difficult than the project team expected. The targeting of the professional development program and the development of the curriculum will be discussed. The authors will also highlight the delivery changes they implemented over the two years of the offerings based on participant feedback. The final aspect of the project is the teacher experience with advanced manufacturing. Hosting teachings and determining what content and activities they experience is a somewhat daunting task. The use of an existing University Program and the selection of collaborating faculty will be discussed. Overall, the lessons learned from this project can be an opportunity for new ATE principal investigators (PIs) to learn from the authors’ experiences. It can also help potential ATE PIs craft more realistic and practical proposals.« less
  3. Advancements in information technology and computational intelligence have transformed the manufacturing landscape, allowing firms to produce highly complex and customized product in a relatively short amount of time. However, our research shows that the lack of a skilled workforce remains a challenge in the manufacturing industry. To that end, providing research experience to undergraduates has been widely reported as a very effective approach to attract students to industry or graduate education in engineering and other STEM-based majors. This paper presents assessment results of two cohorts of Cybermanufacturing REU at a major university. Students were recruited from across the United Statesmore »majoring in multiple engineering fields, such as industrial engineering, mechanical engineering, chemical engineering, mechatronics, manufacturing, and computer science. Several of the participants were rising sophomores or juniors who did not have any industry internship or prior research experience. In total 20 students (ten per year) participated in the program and worked on individual project topics under the guidance of faculty and graduate student mentors. Unlike a typical REU program, the Cybermanufacturing REU involved a few unique activities, such as a 48-hour intense design and prototype build experience (also known as Aggies Invent), industry seminars, and industry visits. Overall, the REU students demonstrated significant gains in all of the twelve research-related competencies that were assessed as a part of formative and summative evaluation process. While almost all of them wanted to pursue a career in advanced manufacturing, including Cybermanufacturing, the majority of the participants preferred industry over graduate school. The paper provides an in-depth discussion on the findings of the REU program evaluation and its impact on undergraduate students with respect to their future plans and career choice. The analysis is also done by gender, ethnicity, academic level (sophomore, junior, senior), and type of home institution (e.g., large research universities, rural and small schools) to explore if there was any significant difference in mean research competency scores based on these attributes.« less
  4. While rural manufacturing job availability is growing throughout the country, rural communities often lack skilled workers. Thus, it is imperative for employers to validate needed new professional competencies by understanding which skills can be taught on-the-job as well as the knowledge and abilities best gained through classroom learning and experiential learning opportunities. This enhanced understanding not only benefits employers’ hiring practices, but also it can help Career and Technical Education (CTE) programs improve curricula and expand learning opportunities to best meet students’ and employers’ needs. In this study, we triangulated industry competency model content with rural employer perspectives on newmore »advanced manufacturing (AM) professionals’ desired competencies (i.e., the level of skill sophistication in a particular AM work area). To extract competencies for entry-level AM rural jobs, we used a deductive approach with multiple methods. First, we used Natural Language Processing (NLP) to extract, analyze, and compare the U.S. Department of Labor’s AM 2010 and 2020 Competency Models because they reflect the levels and topics AM industry professionals nationally reported as technician needs. Then, we interviewed 10 rural AM employers in North Florida to capture their perceptions of the most important competencies for new middle-skill technicians. Interview transcripts were also processed using NLP to extract competency levels and topics; we compared this output to the AM Competency Model analysis results. We deduced that the most critical competencies identified by rural AM employers required direct classroom instruction, but there was a subset of skills obtainable through on-the-job training or other experiential learning. This study, with the goal of addressing employee shortages and increasing the number of technicians ready for the workforce, has implications for rural community colleges’ AM programs curricula and the role of experiential learning.« less
  5. There is significant and growing interest in manufacturing; this is particularly true with respect to advanced manufacturing. Advanced manufacturing typically refers to the use of new technologies to make products that have high value or significant value added through the production process. One of the main impediments advanced manufacturing companies cite is the lack of a skilled workforce. This is the result of both a lack of technical skills, but also due to outdated and incorrect perceptions about manufacturing. Manufacturing is incorrectly perceived as low-skilled, dirty, and low paying. The reality is that a significant portion of manufacturing jobs requiremore »advanced technological knowledge and are done in state of the art facilities. One of the more effective ways to increase knowledge about science, technology, engineering, and math (STEM) careers is to increase the knowledge of teachers. As part of a National Science Foundation Advanced Technological Education project, a group of high school teachers was offered the opportunity to work in advanced manufacturing labs with engineering faculty. These projects included additive manufacturing (AM) of ceramics, surface characterization of AM metal parts, and surface alteration. The teachers were tasked with developing lesson plans which incorporated the advanced manufacturing concepts that they had learned. As part of the assessment of the program, teachers were given pre- and post- research experience surveys regarding their perceptions of manufacturing and their views of STEM topics in general; the later data were collected using the validated T-STEM instrument. External evaluation also provided feedback on the usefulness of various program activities. Overall participants found their laboratory research and research facility tours extremely useful. They felt that the program enhanced their excitement about STEM and their laboratory skills. Participants also showed significant increases in their post program technology teaching efficacy, student technology use, and STEM career awareness. In addition to empirical results, project descriptions and program details are also be presented.« less