skip to main content

Title: Facilitating Advanced Manufacturing Technicians' Readiness in the Rural Economy: A Competency-based Deductive Approach
While rural manufacturing job availability is growing throughout the country, rural communities often lack skilled workers. Thus, it is imperative for employers to validate needed new professional competencies by understanding which skills can be taught on-the-job as well as the knowledge and abilities best gained through classroom learning and experiential learning opportunities. This enhanced understanding not only benefits employers’ hiring practices, but also it can help Career and Technical Education (CTE) programs improve curricula and expand learning opportunities to best meet students’ and employers’ needs. In this study, we triangulated industry competency model content with rural employer perspectives on new advanced manufacturing (AM) professionals’ desired competencies (i.e., the level of skill sophistication in a particular AM work area). To extract competencies for entry-level AM rural jobs, we used a deductive approach with multiple methods. First, we used Natural Language Processing (NLP) to extract, analyze, and compare the U.S. Department of Labor’s AM 2010 and 2020 Competency Models because they reflect the levels and topics AM industry professionals nationally reported as technician needs. Then, we interviewed 10 rural AM employers in North Florida to capture their perceptions of the most important competencies for new middle-skill technicians. Interview transcripts were also processed more » using NLP to extract competency levels and topics; we compared this output to the AM Competency Model analysis results. We deduced that the most critical competencies identified by rural AM employers required direct classroom instruction, but there was a subset of skills obtainable through on-the-job training or other experiential learning. This study, with the goal of addressing employee shortages and increasing the number of technicians ready for the workforce, has implications for rural community colleges’ AM programs curricula and the role of experiential learning. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
2021 ASEE Virtual Annual Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. In northwest Florida, advanced manufacturing (AM) jobs far outpace the middle-skilled technician workforce, though AM constitutes almost a quarter of the region’s total employment. From 2018-2028, of the available 4.6 million manufacturing jobs, less than half are likely to be filled due to talent shortages. This widening “skills gap” is attributed to many factors that range from new technologies in the AM industry (e.g., artificial intelligence, robotics), a need for newer recruiting methods, branding, and incentives in AM educational programs. Some professionals have even indicated that manufacturing industries and AM educational programs should be aligned more to reflect the needs of the industry. Even in the wake of Covid-19, when there have been over 700,000 manufacturing jobs lost due to market conditions, many states still have jobs that go unfilled further suggesting that there are challenges in filling AM technician positions. In a time when technicians in AM are in high demand and the number of graduates are in low supply, it is critical to identify whether AM education is meeting the needs of new professionals in the workforce and what they believe can be improved in these programs. This is especially true in rural locales, where economies with manufacturingmore »industries are much more reliant on them. In the context of a NSF Advanced Technological Education (ATE), through a multi-method approach, we sought to understand: 1) Which AM competencies skills did participants report as benefiting them in gaining employment? 2) Which competencies are needed on the job to be a successful AM technician? 3) What are the ways in which AM preparation can be improved to enhance employment outcomes? This study’s results will expand the research base and curriculum content recommendations for regional AM education, as well as build regional capacity for AM program assessment and improvement by replicating, refining, and disseminating study approaches through further research, annual AM employer and educator meetings, and annual research skill-building academies in which stakeholders transfer research findings to practices and policies that empower rural NW Florida colleges. To date, research efforts have demonstrated that competency perceptions of faculty, employers, and new professionals have notable misalignments that have opportunities for AM program curriculum revision and enhancement. This paper summarizes five years of research output, emphasizing the impactful findings and dissemination products for ASEE community members, as well as opportunities for further research.« less
  2. In this research paper, we report our assessment of the congruence between two-year advanced manufacturing (AM) program syllabi to employer needs expressed in the Department of Labor’s (DOL) AM Competency Model. The dynamic AM industry relies on two-year AM technician program graduates from state and community colleges. These program curricula are mandated to reflect state career and technology education (CTE) curriculum frameworks, but the frameworks are not designed to measure graduates' abilities to meet AM employers’ current needs. Because this technology-reliant industry changes so quickly, faculty are challenged to source, develop, and implement responsive educational experiences. Through consultation with industry leaders, the Department of Labor (DOL) developed an AM competency model to illustrate and promote workers’ necessary knowledge, skills, and dispositions. To determine whether the AM competency model can function as an exit assessment for AM program graduates, we compared AM program syllabi from five rural Northwest Florida state colleges to the DOL AM Competency Model. We text-mined competencies in both syllabi and the AM Competency Model and compared them to identify: 1) frequently addressed topics; 2) verbs guiding course learning outcomes versus the skill depth desired by employers; and 3) overall match between documents. Our findings indicate that despitemore »being developed to reflect the same curriculum framework, the five AM programs’ topical and complexity emphases varied widely. Overall, AM Competency Model content reflected higher levels of the Bloom’s Revised Taxonomy of Educational Objectives, highlighting industry commitments to fostering analysis, evaluation, and creation. We conclude with implications for educational institutions, AM policymakers, and industry, outline the need for an AM Body of Knowledge, and propose an ongoing assessment model to improve the congruence between what employers want and what is taught in two-year AM degree programs.« less
  3. In this research paper, we compare the alignment between advanced manufacturing (AM) competencies in Florida’s Career and Technical Education (CTE) AM Curriculum Framework and the U.S. Department of Labor’s Advanced Manufacturing Competency Model. AM educators are guided by state department of education documents that specify program content, while employers track the knowledge, skills, and dispositions that AM technicians require to successfully function in the workplace. The Curriculum Framework, created with input from educators and industry, shape AM curricula and course syllabi because they specify the learning outcomes that AM graduates upon completion of two-year AM degree programs. The Department of Labor’s Advanced Manufacturing Competency Model, crafted by federal policymakers and industry representatives, includes personal, academic, industry-specific, and managerial competencies needed by successful AM technicians; the Model is intended to influence technicians’ hiring, training, and evaluation. Although these documents were created by different sets of stakeholders, they “bookend” AM technicians’ school-to-career pathways. To determine the extent to which the 2019-2020 Florida AM Curriculum Framework aligns to the Department of Labor’s Advanced Manufacturing Competency Model, we used text mining to extract and compare the key competencies found in both documents. Through this approach, we compared these documents and identified: 1) frequently addressedmore »topics; 2) verbs that guided the complexity (i.e., Bloom’s Revised Taxonomy of Learning Objectives cognitive level) of the course learning task versus workplace competency; and 3) overall match between the documents. Our results suggest that the documents overlap very little, with significant misalignments in higher-level Bloom’s verbs. We present implications for educational institutions, AM policy makers, and industry; suggest a revision cycle and process; and propose an ongoing assessment model to improve the congruence between what employers want and what is taught in two-year AM degree programs.« less
  4. To build the nation's skilled technical workforce, the demand for entry and middle-skill professionals in technical fields in Science, Technology, Engineering, and Mathematics (STEM) is increasing. The alignment between educational programming and job requirements for STEM-oriented technicians is essential for establishing career pathways that produce high-quality middle skills professionals for technology-rich fields. Building on prior research on rural Florida’s information technologies career pathways, in this National Science Foundation (NSF) Advanced Technician Education (ATE) targeted research project, FSU researchers are investigating alignment among educational opportunities, employer needs, student readiness and new employee experiences in Advanced Manufacturing (AM) and test the usefulness of tools and processes developed to assess such alignment, focusing on the opportunities and challenges in Florida’s rural areas. Researchers constructed and are iteratively refining an AM Body of Knowledge (BOK) for analysis and community engagement. The quantitative and qualitative mixed methods research design combines content analysis and text mining using the BOK with surveys, and interviews/focus groups. The research team is applying text mining approaches to identify the match between syllabi learning outcomes, industry certification requirements, state curriculum frameworks, and job postings. In interviews and focus groups, researchers are qualitatively assessing the employers’ competency expectations and new professionals’ jobmore »experiences. These analyses will build capacity among rural stakeholders to strengthen and expand their technical workforce.« less
  5. To meet the rising skill demands of the dynamic advanced manufacturing (AM) industry, two-year AM programs must produce well-trained graduates. This need is especially marked in Florida because the state is an AM leader, producing intermediate and finished products ranging from plastics to tortillas to motor vehicles. In total, Florida is home to over 20,000 AM companies employing over 320,000 workers. Florida is also geographically diverse, being simultaneously one of the most urban and one of the most rural highly populous states in the country. To characterize Florida's AM employment needs, we sought to determine how AM jobs were distributed across the state. We analyzed 108 job postings from Florida employers who were seeking manufacturing and engineering technicians through publicly available job postings. We used text mining to extract the knowledge areas and verbs in the documents that AM employers identified in job postings and desired from their entry-level employees. We compared those topics and verbs to the ones found in the Florida Department of Education's (FLDoE) AM curriculum framework for two-year programs. We found varying levels of alignment, and, in some instances, misalignment, between employers' desired topics and competency levels and those found in FLDoE Frameworks. Our findings notmore »only highlight the importance of industry-education partnerships to tailor preparation to employer needs, but also suggest that a deeper exploration and analysis of AM jobs is needed to further determine alignment to FLDoE frameworks. We conclude that the FLDoE framework may be used as a foundation, but not the sole source, for important AM knowledge areas.« less