This paper is the second in a series of annual papers about the role 2-year Hispanic Serving Institutions (HSIs) have in educating technicians from underrepresented groups and how the National Science Foundation (NSF) sponsored HSI Advanced Technological Education (ATE) Hub program supports faculty at HSIs in improving Hispanic/Latinx student success. The goal of the HSI ATE Hub project is to build capacity and leadership at 2-year HSIs for developing competitive ATE proposals to NSF to prepare technicians in advanced technologies that drive the American economy. Funded by the NSF ATE Program, the HSI ATE Hub is a three-year collaborative project implemented by Florence Darlington Technical College in South Carolina and the Science Foundation Arizona Center for STEM at Arizona State University. Last year’s paper described the research need, provided a project overview, included baseline and initial data, and discussed early lessons learned and their implications for future research. This paper describes continued fostering of the HSI ATE community (2-year HSIs with grant prospects and awards from the NSF ATE Program), resource dissemination, usage, perceived value to the community, and additional data gathered during the first and second cohorts of HSI ATE Hub, including adjustments based on learnings from year 1. Emphasis will be placed on HSI ATE Community building and resources. Lessons learned and implications for future research are also described in the paper. 
                        more » 
                        « less   
                    
                            
                            An advanced technological education project for high value manufacturing: lessons learned
                        
                    
    
            Projects rarely go according to plan, but this is especially true of those that involve multiple institutions and have a significant degree of complexity associated with them. This work relates the experiences an Advanced Technological Education (ATE) project around high value manufacturing. The project was a collaboration with a Texas A&M University and Houston Community College. The project comprised three main aspects: 1) the development of a certificate program in high value manufacturing; 2) offering professional development to working professionals in the area of high value manufacturing; and 3) educating teachers about advanced manufacturing with a goal of recruiting their students into manufacturing careers. This work describes the lessons learned through each of the project aspects. The design of the High Value Manufacturing Certificate Program required close collaboration between both institutions. The issues that arose during this development process included personnel turnover, approval timelines and processes, and agreement on the course content. The authors will relay how they navigated these issues to get the program created and approved. The creation of the professional development program did not involve the community college directly, but was very dependent on recruiting participants. This recruitment proved to be more difficult than the project team expected. The targeting of the professional development program and the development of the curriculum will be discussed. The authors will also highlight the delivery changes they implemented over the two years of the offerings based on participant feedback. The final aspect of the project is the teacher experience with advanced manufacturing. Hosting teachings and determining what content and activities they experience is a somewhat daunting task. The use of an existing University Program and the selection of collaborating faculty will be discussed. Overall, the lessons learned from this project can be an opportunity for new ATE principal investigators (PIs) to learn from the authors’ experiences. It can also help potential ATE PIs craft more realistic and practical proposals. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1501952
- PAR ID:
- 10186256
- Date Published:
- Journal Name:
- ASEE annual conference
- ISSN:
- 0190-1052
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This paper is the second in a series of annual papers about the role 2-year Hispanic Serving Institutions (HSIs) have in educating technicians from underrepresented groups and how the National Science Foundation (NSF) sponsored HSI Advanced Technological Education (ATE) Hub program supports faculty at HSIs in improving Hispanic/Latinx student success. The goal of the HSI ATE Hub project is to build capacity and leadership at 2-year HSIs for developing competitive ATE proposals to NSF to prepare technicians in advanced technologies that drive the American economy. Funded by the NSF ATE Program, the HSI ATE Hub is a three-year collaborative project implemented by Florence Darlington Technical College in South Carolina and the Science Foundation Arizona Center for STEM at Arizona State University. Last year’s paper described the research need, provided a project overview, included baseline and initial data, and discussed early lessons learned and their implications for future research. This paper describes continued fostering of the HSI ATE community (2-year HSIs with grant prospects and awards from the NSF ATE Program), resource dissemination, usage, perceived value to the community, and additional data gathered during the first and second cohorts of HSI ATE Hub, including adjustments based on learnings from year 1. Emphasis will be placed on HSI ATE Community building and resources. Lessons learned and implications for future research are also described in the paper.more » « less
- 
            This paper presents a project framework for the development of an adaptive learning environment to provide a wide range of students with the skills necessary to work in high value manufacturing (HVM) aimed at the energy industry. More specifically, it discusses a HVM certificate program being developed at Houston Community College (HCC) in collaboration with Texas A&M University (TAMU). The aim of the project is to create a sustainable certificate program in HVM that provides multiple pathways for community college students while meeting the critical workforce needs of a vital industry in Texas. The novelty of the certificate program includes innovative pedagogical methods, such as competency-based learning and skills need assessment and provision through online learning modules is presented; this allows students an adaptive and personalized education in this needed area. Upon completion of the certificate program, the community college students will have multiple pathways including: a) an A.S. at the Community College; b) transfer to four year institution; and c) return to industry to join the workforce. By incorporating a new co-educational paradigm between the community college and the university, as opposed to traditional articulation agreements, this project provides a novel pathway for community college students to transition to a four-year degree program. It also incorporates a new method for trying to ensure that community college students who matriculate to partner 4-year institutions receive reverse transfer credit for their associate degrees at their home community college. Furthermore, HVM modules are developed for high school students that are aligned with the Next Generation Science Standards.more » « less
- 
            The National Science Foundation (NSF) Advanced Technological Education (ATE) program is specifically designed to support workforce development that primarily takes place in technician education programs offered at two-year colleges across the nation. Even so, NSF grant funding is infrequently or never pursued by most two-year colleges even though there is a need for funding to support high-cost, high-impact STEM programs. Since two-year colleges are focused on teaching vs. research, securing grants is seldom, if ever, required or even recognized as important as part of tenure and promotion processes at these institutions. As a result, technical/STEM faculty members typically do not have prior grant experience, nor do they have experience in managing a grant-funded project using industry-standard techniques. Guiding new grantees in applying Project Management skills as they implement NSF ATE-funded grants for the first time holds promise for improving project outcomes, reducing the frustration of a steep learning curve for new PIs, and encouraging follow-on grant proposals to the ATE Program. The first two principles of project management, (1) set clear objectives from the start and (2) create a project plan, are required to receive a first grant from NSF. When a grant award is received, two-year college faculty are invariably faced with working grant-funded activities into their already heavily-scheduled work weeks. Knowing about and employing project management skills can make a positive difference in the experience one has as a PI responsible for grant implementation and outcomes. These skills can help prevent chaos as workloads and competing demands for their time increase. To help new PIs learn and use project management skills within the context of NSF expectations so that they may maximize project outcomes and position themselves for subsequent NSF funding. A new professional development opportunity, PI 101, is providing instruction, mentoring, and technical assistance during the first year of project implementation. Based on PI 101 pilot year experiences and research, this support is being strengthened to specifically include the other three principles of project management: (1) organize and manage resources, (2) assess risks and changes throughout the project, and (3) monitor progress and performance on a regular basis. Mentor-Connect Forward, funded by the NSF ATE Program, added a newly developed component that addresses the critical need for first-time grantees to have instruction and support during their first year of project implementation. This professional development opportunity, called PI 101, is being offered to first-time, two-year college PIs to develop skills and help them build confidence by learning to apply proven strategies that can improve project outcomes so that their initial NSF ATE-funded work will build a worthy foundation for future grant awards and associated program improvements and innovation in technician education. PI 101 provides a collegial cohort environment for new PIs as they address issues such as grants management, budgets, and reporting expectations. New PIs can also get answers and receive direction on communication, building internal and external relationships, and developing industry partnerships. An important component of PI 101 is the introduction of the principles of project management as they apply to grant management. The pilot cohort of PI 101 participants received NSF ATE awards in 2023. The impact on the people involved, project progress, and outcomes are being monitored to inform improvements to PI 101 and future research questions. This paper explores the challenges and lessons learned in assisting a cohort of 15 two-year colleges so that they may effectively incorporate principles of project management and other grantsmanship strategies as they implement their first NSF ATE projects.more » « less
- 
            Research shows that there is a growing need for skilled workers in the area of advanced manufacturing; this refers to making use of new technologies and advanced processes to produce products that have high value. More importantly, U.S. government employment data reveals that there is lack of supply of skilled workers in the manufacturing sector. Furthermore, it has also been widely cited in industrial literature that there is a concern regarding the job readiness of fresh college graduates and the gaps in skills sets needed to be successful in an industrial setting, especially in the engineering or manufacturing fields. One approach to bridge the skills gap is to provide customized continuing education to current the workforce as per the industry need. This paper presents a case study of such customized continuing education offered by Texas A&M University for oil and gas industry in Houston, Texas. Specifically, as a part of National Science Foundation Advanced Technological Education project, two professional development sessions were organized in the summer of 2018 in Houston targeting the energy industry. Both programs were two-days long and focused on two key aspects of high value manufacturing: manufacturing operations excellence and manufacturing quality excellence. The professional development sessions were focused on materials and inventory planning, production economics, manufacturing quality, non-destructive evaluation, statistical process control, and lean/ sixsigma. The continuing education programs and course materials were developed based on the feedback from the industry advisory board for the Manufacturing Center of Excellence at Houston Community College, which is a collaborating partner on the ATE Grant. As a part of assessment of the programs, industry participants in the both sessions were given comprehensive surveys asking for their feedback on the applicability of the educational sessions. Overall, the participants rated the sessions very highly on the organization and the relevancy of the program topics and learning materials. The participants also felt that they learned new information through these programs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    